Assembly Language Processor (ALP) Assembler Reference
By IBM
Reprint Courtesy of International Business Machines Corporation, © International Business Machines Corporation
About this Reference
The following notations are used in this reference:
KEYWORDCommands and language keywords.
KEYWORDThe default value for a command or language keyword when multiple values are possible but none are actually specified.
Phrase Typically indicates a hypertext link to a separate panel containing a description for that phrase.
ParameterParameters whose actual names or values are to be supplied by the programmer.
DefinitionA term being defined for the first time, or special emphasis.
Subscript Subscripted text.
Superscript Superscripted text (other than ý).
<Name> A text value represented by "Name" is to be substituted in place of <Name>, typically at assembler run-time.
Assembly Language Processor (ALP) Overview
The Assembly Language Processor (ALP) is an assembler that runs under OS/2 Warp. ALP is a functional replacement for the Microsoft Macro Assembler ( MASM) and accepts:
- The full syntax of the Intel 80X86 architecture
- The full syntax of the MASM 5.10 high-level directive language
- A subset of the MASM 6.00 high-level directive language
ALP generates standard Object Module Format (OMF) files that can be linked to produce DOS or OS/2 executables. It can also generate symbolic debugging information compatible with the IBM family of source code debuggers. A MASM 5.10-compatible command line utility (MASM2ALP) is also provided to enable use of ALP with little or no change to existing build environments.
ALP also offers a rich set of command line options, as well as a comprehensive listing output cabability that is highly configurable, allowing a visual perspective not possible with other assemblers.
Installation
The following components are part of the ALP package:
ALPThe assembler itself. These are the basic files that must be installed before the assembler can be used.
MASM2ALPThe MASM 5.10 Command Line Driver. The ALP component must be installed before the MASM2ALP utility can be utilized.
Installing ALP
ALP consists of two files:
alp . exe alp . msg
You can rename the root portions of the two file names if desired. In most cases, it does not matter whether the file names are in upper- or lowercase because the default OS/2 file systems disregard case. It is possible, however, that the use of an OS/2 Installable File System (IFS) might require that file names be referenced exactly as they are named with respect to upper- and lowercase. If this is true, then the root portion of the alp.exeand alp.msgfile names (see BaseEXE) must be spelled identically and the .msgextension on the messages file name must be specified in lowercase or the assembler will not be able to find the messages file at run time.
To install ALP on OS/2:
1.Copy alp.exeinto a directory of your choice. If the assembler will be invoked from the command line (rather than by absolute reference from a makefile or command file), then the selected directory should be among those referenced by the PATHenvironment variable.
2.For best performance, the alp.msgfile should be copied into the same directory used in step 1 or in a directory referenced by the <BaseEXE>_PATHenvironment variable. It is not necessary to set any additional environment variables if the first method is used.
Alternatively, a directory referenced by the DPATHenvironment variable may also be used, but performance may be degraded during initialization, since the assembler must search all of the listed directories for the alp.msgfile. See The ALP Messages Filefor more information.
3.Optionally, default values for command line options may be established. See <BaseEXE>_OPTIONSfor more information.
Installing MASM2ALP
The MASM2ALP utility consists of a single file:
masm2alp . exe
To install MASM2ALP on OS/2:
1.Copy masmalp.exeinto a directory of your choice. If the utility will be invoked from the command line (rather than by absolute reference from a makefile or command file), then the selected directory should be among those referenced by the PATHenvironment variable.
It is recommended that both masm2alp.exeand alp.exebe installed in the same directory, especially in build environments where reliance on environment variables is discouraged. If masm2alp.exeis invoked by absolute path name (rather than via a PATHsearch), it will use that same path when it first attempts to execute alp.exe. This technique allows execution of alp.exewithout requiring it to be referenced in the PATH. If the search fails, the path name prefix will be removed and MASM2ALP will rely on the operating system to locate alp.exe.
2.If you also use the Microsoft Macro Assembler, you must decide if MASM2ALP will replace MASM or co-exist with it. This usually means renaming the MASM executable (masm.exe) to something else, then renaming masm2alp.exeto masm.exe. Alternatively, you may choose to leave the names unchanged, taking manual steps in your makefiles or build scripts to insure that the correct executables are referenced from your build environment.
3.Optionally, default values for command line options may be established by defining the MASMenvironment variable. MASM2ALP interprets the contents of this environment variable before processing the command line. Any values set in this manner are translated and passed to alp.exevia the command line. The <BaseEXE>_OPTIONSenvironment variable used by alp.exeis not queried or modified by MASM2ALP.
4.If it becomes necessary to analyze a problem with MASM2ALP (such as failure to invoke alp.exe, or other unexpected behavior), defining the ALP_ ECHOenvironment variable to any non-empty value will cause MASM2ALP to echo the generated command line to the standard output device.
Understanding ALP
This chapter describes:
The ALP message file
ALP internal variables
Though you do not need to understand this information to be able to use ALP , you may need this information for troubleshooting purposes.
The ALP Messages File
Nearly every message displayed by ALP at run time is stored in a separate message file. The exception to this rule are messages that are displayed if the message file cannot be opened: ALP ends if one of these messages is displayed.
When ALP starts, it determines the name of the message file by creating a name of the form <BaseEXE>.msg(see BaseEXE). Once ALP knows the name of the message file, ALP searches the following directories in the following order for the file:
1.Current directory
2.The directory contained in the BasePATHinternal variable
3.Each of the directories specified in the BaseEXEinternal variable
4.Each of the directories specified in the PATHenvironment variable
5.Each of the directories specified in the DPATHenvironment variable
Internal Variables
ALP maintains a set of internal variablesthat it uses for various purposes . These variables reflect the ALP environment; programmers do not use these variables. Their values may be indirectly affected by the user of ALP , for instance, through the use of various command line options.
BaseEXE
When ALP is invoked, if the full path name of the ALP executable was provided by the operating system, then the "base" portion is isolated and used to construct the value of the BaseEXEinternal variable. For instance , if the user invoked ALP and the name of the executable was made available as "C:\TOOLS\ALP.EXE", then the BaseEXEinternal variable would contain the value "ALP". The value of BaseEXEis used to differentiate ALP-specific components in the environment (such as data files or environment variables) from those that are globally accessible to all programs. Even multiple versions of ALP can coexist without environmental "collisions" simply by copying and renaming the ALP executable and its associated message file.
If the file name of the ALP executable is notavailable at run time, then the value of BaseEXEdefaults to "ALP".
BasePATH
When ALP is invoked, if the full path name of the ALP executable was provided by the operating system, then the "path" portion is isolated and used to construct the value of the BasePATHinternal variable. For instance, if the user invoked ALP and the name of the executable was made available as "C:\TOOLS\ALP.EXE", then the BasePATHinternal variable would contain the value "C:\TOOLS\". The value of BasePATHcan be used to locate ALP-specific components in the environment (such as the ALP messages file) without the need to store this information in an alternate environment variable such as DPATH. Check your operating system documentation to see if it feasible to use the BasePATHmethod of locating ALP components.
If the file name of the ALP executable is notavailable at run time, then the value of BasePATHis NULL.
IncDIR
This variable contains the empty string unless explicitly initialized with the Fdiparameterized command line option; it contains the cumulative value of all the specified include paths.
Related Information:
IncEXT
This variable contains the default include file name extension that is conditionally appended to unadorned file names generated by the INCLUDEpreprocessor directive. The default value for IncEXTis ".inc" unless altered by use of the Feiparameterized command line option.
Related Information:
�Options
�File Names
�Fei - Control Include File Extension (IncEXT)
LstDIR
This variable contains the empty string unless explicitly initialized with the Fdlparameterized command line option; it is only used if the value specified by the Flcommand line option did not contain any path information.
Related Information:
�Options
�File Names
�Fl - Produce Listing File
�Fdl - Directory to Store Listing File (LstDIR)
LstEXT
This variable contains the default listing file name extension that is conditionally appended to the concatenated values of LstDIRand LstNAME; the assembler treats the resulting string as the fully qualified listing file name. The default value for LstEXTis ".lst" unless altered by use of the Felparameterized command line option.
Related Information:
�Options
�File Names
�Fel - Control Listing File Extension (LstEXT)
LstNAME
This variable contains the same value as the contents of SrcNAME, unless initialized with the Flparameterized command line option.
Related Information:
�Options
�File Names
�Fl - Produce Listing File
MsgDIR
This variable contains the empty string unless explicitly initialized with the Fdmparameterized command line option; it is only used if the value specified by the Fmcommand line option did not contain any path information.
Related Information:
�Options
�File Names
�Fm - Produce Messages File
�Fdm - Directory to Store Messages File (MsgDIR)
MsgEXT
This variable contains the default messages file name extension that is conditionally appended to the concatenated values of MsgDIRand MsgNAME; the assembler treats the resulting string as the fully qualified messages file name. The default value for MsgEXTis ".msg" unless altered by use of the Femparameterized command line option.
Related Information:
�Options
�File Names
�Fem - Control Messages File Extension (MsgEXT)
MsgNAME
This variable contains the same value as the contents of SrcNAME, unless initialized with the Fmparameterized command line option.
Related Information:
�Options
�File Names
�Fm - Produce Messages File
ObjDIR
This variable contains the empty string unless explicitly initialized with the Fdoparameterized command line option; it is only used if the value specified by the Focommand line option did not contain any path information.
Related Information:
�Options
�File Names
�Fo - Produce Object File
�Fdo - Directory to Store Object File (ObjDIR)
ObjEXT
This variable contains the default object file name extension that is conditionally appended to the concatenated values of ObjDIRand ObjNAME; the assembler treats the resulting string as the fully qualified object file name. The default value for ObjEXTis ".obj" unless altered by use of the Feoparameterized command line option.
Related Information:
�Options
�File Names
�Feo - Control Object File Extension (ObjEXT)
ObjNAME
This variable contains the same value as the contents of SrcNAME, unless initialized with the Foparameterized command line option.
Related Information:
�Options
�File Names
�Fo - Produce Object File
SourceNAME
This variable contains the name of the top-level source file currently being processed by the assembler; its contents appear exactly as the user typed it on the command line. Other internal variables derive their contents from this value.
Related Information:
SrcDIR
This variable is derived from SourceNAMEand reflects any drive or path information contained therein. For instance, if the value of SourceNAMEis "D:\Source\Dump\DumpMain.asm", then the value of SrcDIRwould be "D:\Source \Dump\". If no drive or path information was specified in the file name, then SrcDIRwill contain the empty string.
Related Information:
SrcEXT
This variable contains the default source file name extension that is conditionally appended to the concatenated values of SrcDIRand SrcNAME; the assembler treats the resulting string as the fully qualified input file name. The default value for SrcEXTis ".asm" unless altered by use of the Fesparameterized command line option.
Related Information:
�Options
�File Names
�Fes - Control Source File Extension (SrcEXT)
SrcNAME
This variable contains the "root file name" portion of the source file name , which is extracted from the contents of the SourceNAMEvariable. For instance, if the value of SourceNAMEis "D:\Source\Dump\DumpMain.asm", then the value of SrcNAMEwould be "DumpMain". SrcNAMEshould never contain the empty string unless the input file name was incorrectly specified; in which case the assembler will generate an error when it tries to access the file.
Related Information:
Using ALP
This chapter tells you how to:
1.Invoke and use ALP
2.Use environment variables to pass information to ALP
Invoking ALP
To invoke ALP from the command line, type:
alp
You can also invoke ALP by absolute reference from a makefile or command file; to do this, the directory should be among those referenced by the PATHenvironment variable.
Using Environment Variables
This section describes the environment variables that you can set and that are used by ALP.
_INCLUDE
When ALP processes an INCLUDEdirective, ALP translates the value of the BaseEXEinternal variable to uppercase and uses this value to construct the name of an ALP-specific environment variable having the form:
< BaseEXE > _ INCLUDE
For example, If the value of BaseEXEis alp, then ALP constructs an environment variable called ALP_INCLUDEand tries to locate it in the environment. If found, its contents would be expected to contain a list of directories in a format identical to that of the standard INCLUDEenvironment variable.
_OPTIONS
ALP translates the value of the BaseEXEinternal variable to uppercase and uses this value to construct the name of an ALP-specific environment variable having the form:
< BaseEXE > _ OPTIONS
For example, if the value of BaseEXEis alp, then ALP constructs an environment variable called ALP_OPTIONSand tries to locate it in the environment. If found, its contents are logically prepended to the assembler command line.
You can use this variable to set alternate default values for assembler command line options. For maximum flexibility, it is recommended that this variable contain a reference to a command line response file using an @ Filenamedirective, which allows the default command line options to be stored in a file rather than in the environment variable itself.
_PATH
Whenever ALP needs to search for one of its own component files (such as the messages file), the value of the BaseEXEinternal variable is translated to uppercase and is used to construct the name of an ALP specific environment variable having the form "<BaseEXE>_PATH." For example, if the value of BaseEXEis "alp," then an environment variable called ALP_PATHwould be constructed and an attempt would be made to locate it in the environment. If found, its contents would be expected to contain a list of directories in a format identical to that of the standard PATHenvironment variable. ALP then searches this list of paths when attempting to locate the component file.
DPATH
The DPATHenvironment variable may be utilized for the same purposes as the <BaseEXE>_PATHinternal variable if so desired.
INCLUDE
The INCLUDEenvironment variable may be utilized for the same purposes as the <BaseEXE>_INCLUDEinternal variable if so desired.
PATH
The PATHenvironment variable may be utilized for the same purposes as the <BaseEXE>_PATHinternal variable if so desired.
Using the Command Line
This section describes command line parameter types, syntax, and options.
Command Line Parameter Types
Command line parametersare individual "words," or patterns of characters separated by white space. Each individual parameter is recognized by the command line lexical analyzer as having a certain "pattern," and is thus assigned a parameter type, as described in the following sections. Parameters should be separated by one or more blanks, tabs, or (when reading from a response file) new line characters, and double quotation marks may be used on the command line to remove the special meaning from the operating system metacharacters. Although the host operating system may support the enclosing of command line parameters within double quotes ( "") (known as "quoting"), the ALP command line parser also performs quote interpretation. This is necessary to properly interpret quoted parameters within @Filenameresponse files, for which there is no built-in support provided by the default operating system command shell.
Parameter types are determined by looking at the first character of each individual "word." Options begin with a plus (+) or minus (-), and file names begin with any other legal file name character (as dictated by the operating system). A special case is a word beginning with the at sign(@) character, which signifies the beginning of the @Filename(read from a response file) directive.
Options
Options appear on the command line as mnemonic identifiers prefixed by either of the plus (+) or minus (-) characters, and must be separated from other command line parameters by at least one blank character. Case is not significant in option identifiers.
A single option may be specified more than once on the command line within a given scope; the last occurrence overrides all previous definitions within that scope unless the effect of the option is to collect information in a cumulative fashion. Options are not cumulative unless documented otherwise on an individual basis.
There are two forms of options:
�Switch Option
�Parameterized Option
Some options may actually combine both functions of the switchedand parameterizedvariations; for instance, the +Flswitch option "turns on" the creation of a listing file, while a parameterized option of the same name (for example, +Fl:george.lst) has the same effect, but also treats the argument field as the name of the listing file to create.
Switch Option
Switch Optionsrepresent a Boolean value (onor off, yesor no, trueor false) for the identifier specified in the option. The plus (+) or minus ( -) character introducing the option specifies the value of the switch; "+" is equivalent to on, yes, or true; and "-" is equivalent to off, no, or false.
Because plus (+) is not a character traditionally used to introduce a command line option, ALP provides an alternate method of specifying a switch option that resembles a more commonly used syntax. The character that affects the actual value of the "switch" (that is, the (+) or (-) character) may also be specified directly after the option identifier; in this case the option must still be introduced by either the (+) or (-) character, but the trailing "switch value" takes precedence.
The following are examples of Switch Options:
+ ML - ml + + Fl - Fl -
Parameterized Option
Parameterized Optionsare introduced in the same manner as switch options, but are instead followed by a colon (:) or an equals sign (=) (with no intervening blank space) to indicate that the option takes one or more arguments. The format of the argument field is option specific.
Using the plus (+) character versus the minus (-) character to introduce a parameterized option may or may not have an effect upon how the option is interpreted. Refer to the description of each individual option for details.
The following are examples of Parameterized Options:
- Fl = Zappa . lst - Sv : M510 + fo = " \ obj \ dd \ driver . obj " - m : 127 -
File Names
A file name may be used as an argument to certain command line options or as a stand-alone command line parameter. The file name character set and naming conventions are operating system dependent, and are treated as transparently as possible by ALP. The use of operating system metacharacters in file names should be avoided, and file names should not begin with the plus (+) or minus (-) characters.
Any file name may be "qualified" with drive or path information as appropriate for the host operating system. ALP accepts both the forward slash (/) and the backward slash (\) as legal path name characters, as well as the colon (:) character. Care must be exercised however, because the underlying operating system may reject the usage of some of these characters.
Command Line Syntax
/-------------------------------------------------------------------------------\ | | | /----------------------\ | | | | | | >>--ALP-------------------------------------------FileName File Options---->< | | \-Global Options-/ \-Group Options-/ | | | \-------------------------------------------------------------------------------/
The assembler accepts one or more file names for processing. Each file name is taken to be the name of a source file to assemble; file names are not interpreted according to their file "type" or extension to determine if they are valid input files.
The OS/2 version of the assembler is enabled to accept wild-card characters(? and *) in file names, which emulates the UNIX ability to expand a single file name specification into a list of all files that match the wild -card pattern. The ?character matches any single file name character in the given position, and the *character matches any number of file name characters.
Global Options
Command line options fall into this category only if they apply to the assembler executable itself and not to any specified files. Options that request the display of assembler help messages fall into this category, as well as the option that controls display of the assembler banner.
Group Options
Command line options fall into this category if the settings they control can be applied to a list of multiple files within a given scope without causing ambiguities. Group options are useful for such operations as:
�Requesting a listing file be generated for all files within the group
�Specifying the target directory for all generated object files
�Controlling the display of warning and informational messages for all files within the group
Within a given scope (see Command Line Scope Operator ()) the command line parser assigns the groupclassification to each option until the first source file name is encountered; group option settings are applied to all file names that follow within a given scope. After encountering the first source file name, options are assigned the fileclassification.
File Options
All options appearing to the right of a file name within a given scope (see Command Line Scope Operator ()) are applied to that file only. File options take precedence over any settings inherited from previously encountered group options.
It should be noted that file names specified using wild-card characters and used in combination with file options may not yield the expected result; the file options will be applied only to the last file in the resulting wild-card expansion file name list.
Command Line Scope Operator ()
At any point on the command line, a new scopemay be opened using the scope operator (). The scope operator effectively creates a new logical command line whose contents are enclosed in parentheses and is parsed in isolation from other scopes. Any group options in effect at the time the new scope is opened are inherited and applied to all files named within.
Command Line Options
This section describes all the ALP command line options. For each option, a table appears in the description section with the following format:
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |... |... |... |... |... | \-------------------------------------------------------------------------/
The values appearing in this table are defined as follows:
Type This field specifies the typeof the option described in that row, and can be one of:
S- Switch Option
P- Parameterized Option
Global Specifies whether or not the option is valid only in a globalcontext; that is, in the outermost scope on the command line. These options typically have meaning only for the assembler executable itself, and not for any files to be processed.
Group Specifies whether or not the option is valid in a groupcontext; that is, if the option may be applied to multiple files within a given scope without causing ambiguities.
File Specifies whether or not the option is valid only in a filecontext; that is, if the option may only be applied to a single file within a given scope.
Default This field shows the default value for the option being described.
Base Options
This section describes the standalone base options that are defined by a single unique mnemonic identifier character.
D - Define Text Macro
This option allows the definition of a symbolic identifier that becomes visible during the assembly of the input file. A single parameter must be specified using one of the following forms:
Name[=Value]
Name[:Value]
The Nameentry must have the same lexical syntax as a normal assembler Identifier. The Nameentry is converted to a Text-EquateNamebefore assembly begins. If no explicit value is specified for the name, then it is assigned the empty string. This is equivalent to specifying the following assembler statement:
Name EQU < >
If an explicit value is to be assigned, the Nameentry must be immediately followed by a colon (:) or equals sign (=) delimiter with no intervening spaces. Blank characters may be specified between the delimiter and the value field. The Valuefield may contain any text data, but it must be enclosed in double quotes ("") if it contains blanks, tabs, or operating system metacharacters (such as & or |).
Note:If quotes are used to specify a value containing embedded blanks or tabs, then at least one blank is required between the delimiter (colon or equals sign) and the opening quote of the value field. For example:
- D : NAME = " This string will be correctly interpreted " - D : NAME = " This will not ; no blank after the equals sign "
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |(no default value) | \-------------------------------------------------------------------------/
I - Specify Include File Search Path
See Fdi - Specify Include File Search Path.
File Control Options
All options that perform file or file name manipulation are described in this section. File Control Options begin with the letter "F", and the last letter of the option identifier specifies the type of file or file name to which the option applies as follows:
iInclude File
lListing File
mMessages File
oObject File
sSource File
Fl - Produce Listing File
Turn this flag on to produce an assembler listing file. Using the parameterized version of the option allows the listing file to be explicitly named.
Only this option controls the actual creation of a listing file; Listing Control Optionshave no effect if this option has not been turned on.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |-Fl (no listing file is generated) | |----+------+-----+----+--------------------------------------------------| |P |No |No |Yes |-Fl:<LstDIR><LstNAME>[<LstEXT>] | | | | | |(A listing file name is generated using the values| | | | | |of the referenced internal variables. The LstEXT | | | | | |extension is appended if this feature is turned | | | | | |on.) | \-------------------------------------------------------------------------/
Fm - Produce Messages File
Turn this flag on to produce a messages file. Using the parameterized version of the option allows the messages file to be explicitly named.
Within the context of a given assembly, by default all error, warning, and informational messages are printed to the standard output device. Use of the Fmoption allows these messages to be redirected to a separate file; this can be useful when dissecting the output from multiple assemblies. Messages with a severity greater than Errorare printed to the standard error device, and do not appear in the messages file.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |-Fm (no messages file is generated; all messages | | | | | |are printed on the standard output) | |----+------+-----+----+--------------------------------------------------| |P |No |No |Yes |-Fm:<MsgDIR><MsgNAME>[<MsgEXT>] | | | | | |(A messages file name is generated using the | | | | | |values of the referenced internal variables. The | | | | | |MsgEXT extension is appended if this feature is | | | | | |turned on.) | \-------------------------------------------------------------------------/
Fo - Produce Object File
An object file name is generated using the values of the referenced internal variables. The ObjEXTextension is appended if this feature is turned on.
By default, this switch is turned on and thus an object file is produced ( provided the assembly completes without errors); this switch may be turned off if an object file is not desired. Using the parameterized version of the option allows the object file to be explicitly named.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |+Fo (an object file is generated) | |----+------+-----+----+--------------------------------------------------| |P |No |No |Yes |-Fo:<ObjDIR><ObjNAME>[<ObjEXT>] | \-------------------------------------------------------------------------/
Fdi - Specify Include File Search Path
This option accepts a path (or list of paths separated by semicolons) that are searched by the assembler while attempting to locate an INCLUDEfile. When multiple occurrences of this option are specified within a given scope , the effect is cumulative rather than destructive; successive occurrences add to the existing list rather than overwriting previous definitions. The more conventional spelling "I" can be used as an alias for the Fdioption.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-Fdi:<IncDIR> | \-------------------------------------------------------------------------/
Fdl - Directory to Store Listing File (LstDIR)
This option affects the LstDIRvariable and allows the user to specify a target directory where the listing file(s) will be stored; by default this variable is empty and listing file(s) are created in the current working directory. This value is ignored if the Floption was used to explicitly name the listing file, and the name included absolute or relative path information.
If the value specified in this option is anything other than an unadorned drive letter(for example, D:) or a string ending with a path separator character(/or \), then the path separator characterappropriate for the underlying operating system is appended to the string.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-Fdl:<LstDIR> | \-------------------------------------------------------------------------/
Fdm - Directory to Store Messages File (MsgDIR)
This option affects the MsgDIRvariable and allows the user to specify a target directory where the messages file(s) will be stored; by default this variable is empty and messages file(s) are created in the current working directory. This value is ignored if the Fmoption was used to explicitly name the message file, and the name included absolute or relative path information.
If the value specified in this option is anything other than an unadorned drive letter(for example, D:) or a string ending with a path separator character(/or \), then the path separator characterappropriate for the underlying operating system is appended to the string.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-Fdm:<MsgDIR> | \-------------------------------------------------------------------------/
Fdo - Directory to Store Object File (ObjDIR)
This option affects the ObjDIRvariable and allows the user to specify a target directory where the object file(s) will be stored; by default this variable is empty and object file(s) are created in the current working directory. This value is ignored if the Fooption was used to explicitly name the object file, and the name included absolute or relative path information.
If the value specified in this option is anything other than an unadorned drive letter(for example, D:) or a string ending with a path separator character(/or \), then the path separator characterappropriate for the underlying operating system is appended to the string.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-Fdo:<ObjDIR> | \-------------------------------------------------------------------------/
Fds - Directory to Locate Source File (SrcDIR)
This option affects the SrcDIRvariable and allows the user to specify a source directory from which source file(s) will be loaded; by default this variable is empty and source file(s) are searched for in the current working directory. This value is ignored if the source file name included absolute or relative path information.
If the value specified in this option is anything other than an unadorned drive letter(for example, D:) or a string ending with a path separator character(/or \), then the path separator characterappropriate for the underlying operating system is appended to the string.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-Fds:<SrcDIR> | \-------------------------------------------------------------------------/
Fei - Control Include File Extension (IncEXT)
This option determines whether or not the value of the IncEXTvariable is appended to file names generated by the preprocessor when processing the INCLUDE directive. The parameterized version of this option affects the actual value of the IncEXTvariable.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |-Fei | | | | | |(the value of IncEXT is not appended to include | | | | | |file names) | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-Fei:<IncEXT> | \-------------------------------------------------------------------------/
Fel - Control Listing File Extension (LstEXT)
This option determines whether or not the value of the LstEXTvariable is appended to listing file names. The parameterized version of this option affects the actual value of the LstEXTvariable.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |+Fel | | | | | |(the value of LstEXT is appended to listing file | | | | | |names) | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |+Fel:<LstEXT> | \-------------------------------------------------------------------------/
Fem - Control Messages File Extension (MsgEXT)
This option determines whether or not the value of the MsgEXTvariable is appended to messages file names. The parameterized version of this option affects the actual value of the MsgEXTvariable.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |+Fem | | | | | |(the value of MsgEXT is appended to messages file | | | | | |names) | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |+Fem:<MsgEXT> | \-------------------------------------------------------------------------/
Feo - Control Object File Extension (ObjEXT)
This option determines whether or not the value of the ObjEXTvariable is appended to object file names. The parameterized version of this option affects the actual value of the ObjEXTvariable.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |+Feo | | | | | |(the value of ObjEXT is appended to object file | | | | | |names) | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |+Feo:<ObjEXT> | \-------------------------------------------------------------------------/
Fes - Control Source File Extension (SrcEXT)
This option determines whether or not the value of the SrcEXTvariable is appended to source file names. The parameterized version of this option affects the actual value of the SrcEXTvariable.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |+Fes | | | | | |(the value of SrcEXT is appended to source file | | | | | |names) | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |+Fes:<SrcEXT> | \-------------------------------------------------------------------------/
Listing Control Options
This section describes all options related to controlling the content of the assembler listing file. All listing control options begin with the letter "L".
Options that manipulate the characteristics of individual listing file columns reference a particular column by having a single character mnemonic identifier as part of the option identifier. Listing column mnemonics are as follows:
C Conditional assembly nesting levelis a numeric value that appears during processing of a conditional assembly directive and is incremented for each level of nesting that occurs.
D Macro definition line numbertracks line numbers for each new MACRO definition introduced into the assembly.
F True or false conditional flagappears during processing of a conditional assembly directive and is either a plus (+) character to denote that the conditional expression was TRUE and tokens appearing within the block are being interpreted, or a minus (-) character to denote that the conditional expression was FALSE and tokens appearing within the block are being ignored.
G Generated machine code datacolumn shows the hexadecimal values for data generated by machine instructions or data allocation statements.
I Include file nesting levelis a numeric value that appears during processing of INCLUDE files and is incremented for each level of nesting that occurs.
L Macro expansion indentation levelis a text field whose width reflects the current nesting level of expanded macros, and whose value contains a simulated "arrow" using the "--->" characters.
M Macro expansion nesting levelis a numeric value that appears during macro expansions and is incremented for each level of nesting that occurs.
O Location counter offset valueis a numeric value displayed in hexadecimal notation and indicates the current offset of the location counter within the current segment or structure.
S Source line datacolumn contains the text data of the current line in the input source file.
X Cumulative listing line numberis incremented for every new line that appears in the listing file.
Y Individual source file line numbertracks line numbers for the top-level source file and for each separate INCLUDE file.
Z Macro expansion line numbertracks the current line number for each MACRO expanded during the assembly.
Lc* - Control Display of Individual Columns
This family of options controls whether or not an individual column physically appears in the listing file. The display of each column may be controlled with a switch option by using the standard ON (+) or OFF (-) switch values (see Switch Option) or by using the parameterized option syntax (see Parameterized Option) with one of the following keyword values in the argument field:
BAbbreviation for BLANK.
BLANKThe column will appear as a place-holder in the listing file, but the column data will not be displayed.
OFFThe column will not be displayed.
ONThe column will be displayed.
ZAbbreviation for ZBLANK.
ZBLANKThe column data will only display if its value is nonzero (valid only for numeric fields).
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |+LcX (display Cumulative Listing Line Number) | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |+LcY (display Individual Source File Line Number) | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |-LcZ:Z (display Macro Expansion Line Number if not| | | | | |zero) | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |-LcD:Z (display Macro Definition Line Number if | | | | | |not zero) | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |+LcL (display Macro Expansion Indentation Level) | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |-LcM:Z (display Macro Expansion Nesting Level if | | | | | |not zero) | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |-LcI:Z (display Include File Nesting Level if not | | | | | |zero) | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |+LcC (display Conditional Assembly Nesting Level) | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |+LcF (display True or False Conditional Flag) | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |+LcO (display Location Counter Offset Value) | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |+LcG (display Generated Machine Code Data) | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |+LcS (display Source Line Data) | \-------------------------------------------------------------------------/
Lcm* - Specify Left Margin for Individual Columns
This family of options specifies the left margin value for each individual column, which determines the number of blank spaces that will appear to the left of the column data.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-LcmX:0 (Cumulative Listing Line Number) | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-LcmY:1 (Individual Source File Line Number) | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-LcmZ:1 (Macro Expansion Line Number) | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-LcmD:1 (Macro Definition Line Number) | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-LcmL:0 (Macro Expansion Indentation Level) | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-LcmM:1 (Macro Expansion Nesting Level) | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-LcmI:1 (Include File Nesting Level) | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-LcmC:1 (Conditional Assembly Nesting Level) | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-LcmF:1 (True or False Conditional Flag) | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-LcmO:2 (Location Counter Offset Value) | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-LcmG:2 (Generated Machine Code Data) | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-LcmS:2 (Source Line Data) | \-------------------------------------------------------------------------/
Lct* - Specify Truncation of Individual Columns
This family of options specifies whether or not the data contained within an individual column will be truncated if it exceeds the column width, or whether it will overflow onto additional lines until the entire column contents have been printed.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |+LcmX (truncate Cumulative Listing Line Number) | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |+LcmY (truncate Individual Source File Line | | | | | |Number) | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |+LcmZ (truncate Macro Expansion Line Number) | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |-LcmD (do not truncate Macro Definition Line | | | | | |Number) | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |-LcmL (do not truncate Macro Expansion Indentation| | | | | |Level) | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |+LcmM (truncate Macro Expansion Nesting Level) | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |+LcmI (truncate Include File Nesting Level) | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |+LcmC (truncate Conditional Assembly Nesting | | | | | |Level) | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |+LcmF (truncate True or False Conditional Flag) | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |-LcmO (do not truncate Location Counter Offset | | | | | |Value) | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |-LcmG (do not truncate Generated Machine Code | | | | | |Data) | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |+LcmS (truncate Source Line Data) | \-------------------------------------------------------------------------/
Lcw* - Specify Width of Individual Columns
This family of options specifies the width of each individual listing column in single character positions. Note that the width of column L( Macro Expansion Indentation Level) will vary according to the macro expansion nesting level (which is also displayed as a numeric value in column M) if the nesting level value exceeds the column width. This behavior may be avoided by setting the width of column Lsuch that its width never exceeds the value of column M, or by turning off the display of column Laltogether.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-LcmX:4 (Cumulative Listing Line Number) | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-LcmY:4 (Individual Source File Line Number) | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-LcmZ:3 (Macro Expansion Line Number) | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-LcmD:3 (Macro Definition Line Number) | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-LcmL:0 (Macro Expansion Indentation Level) | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-LcmM:2 (Macro Expansion Nesting Level) | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-LcmI:2 (Include File Nesting Level) | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-LcmC:2 (Conditional Assembly Nesting Level) | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-LcmF:1 (True or False Conditional Flag) | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-LcmO:4 (Location Counter Offset Value) | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-LcmG:24 (Generated Machine Code Data) | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-LcmS:90 (Source Line Data) | \-------------------------------------------------------------------------/
Lc - Control display of false Conditional blocks
This switch determines whether or not sections of source code appear in the listing file when they are rendered inactive by a false conditional expression. By default, the assembler does not show source code in the listing file if it is skipped during conditional processing; turn this switch on if listing of all source code is desired.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |-Lc (do not list false conditional blocks) | \-------------------------------------------------------------------------/
Ld - Control Display of Listing Directives
This switch controls whether or not assembler listing directives appear in the listing output. Listing directives are shown by default; turn this switch off to hide them.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |+Lc (show all listing directives) | \-------------------------------------------------------------------------/
Le - Control Display of Error/Warning/Info Messages
By default, any time the assembler prints an Error, Warning, or Info message during the assembly, the message also appears in the listing file following the source line to which it refers. Turn this switch off if such messages are not desired in the listing output.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |+Le (show messages in listing file) | \-------------------------------------------------------------------------/
Lf - Control Use of FormFeed Characters
When the assembler is generating formatted listing output and it needs to advance to the next page, it inserts the ASCII FormFeed character (0x0C) into the listing output stream. If this causes problems, turning this switch off will instead cause the assembler to generate the appropriate number of newline character sequences to perform the page eject operation.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |+Lf (the FormFeed character is used) | \-------------------------------------------------------------------------/
Li - Control Display of INCLUDE Files
When the assembler processes source code stored in an INCLUDE file, by default the contents of the file are expanded in the listing output; depending on the types of files that are included, this behavior can result in large volumes of listing output. Turn this switch off if the expansion is not desired.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |+Li (INCLUDE files are expanded in listing output)| \-------------------------------------------------------------------------/
Llp - Specify Length of Page
To correctly format the listing file for subsequent hardcopy output, the assembler must know how many physical lines of output will fit vertically on the printed page. This setting is especially important if the use of FormFeed characters has been turned off with the Lfoption. The default value for this option is 66 lines per page.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-Llp:66 (the default page length is 66 lines) | \-------------------------------------------------------------------------/
Related Information:
Lm - Control Display of Macro Expansions
This switch controls whether or not the text body of an expanded macro appears in the listing output. While turning this switch on can be very useful when debugging macros, it can also result in large volumes of listing output if many macros are utilized. By default, macro expansions do not appear in the listing output; turn this switch on if this behavior is desired.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |-Lm (macro expansions do not appear in listing | | | | | |output) | \-------------------------------------------------------------------------/
Lmb - Specify Bottom Margin
This option determines how many blank lines will appear at the bottom of the page in the listing output; by default this value is 4. The correct behavior of this option depends on the setting of the Llpand Lfoptions, and that they match the settings of the physical output device. If there are problems with these settings, then the actual bottom margin may not appear to correctly reflect the value of this option.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-Lmb:4 (4 blank lines at bottom of page) | \-------------------------------------------------------------------------/
Related Information:
- #Lf - Control Use of FormFeed Characters
- #Llp - Specify Length of Page
- #Lmb - Specify Middle Margin after Title
- #Lmt - Specify Top Margin before Title
Lml - Specify Left Margin
This option specifies the number of blank characters that are printed to the left of every line of listing output. The default value for this option is 4.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-Lml:4 (left margin is 4 blank characters wide) | \-------------------------------------------------------------------------/
Related Information:
�Lmr - Specify Right Margin
�Lwp - Specify Width of Page
�Lcm* - Specify Left Margin for Individual Columns
Lmb - Specify Middle Margin after Title
This option specifies the number of blank lines that separate the assembler heading, the title and subtitle (if there are any), from both the column ruler(if there is one) and the body of the generated listing text. The default value for this option is 2 blank lines.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-Lmm:2 (2 blank lines after title and subtitle, | | | | | |and before ruler line) | \-------------------------------------------------------------------------/
Related Information:
�Llp - Specify Length of Page
�Lmb - Specify Bottom Margin
�Lmt - Specify Top Margin before Title
�Lr - Control Display of Column Ruler
Lmr - Specify Right Margin
This option specifies the number of blank characters that are reserved (but not actually printed) to the right of every line of listing output. The default value for this option is 4.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-Lmr:4 (right margin is 4 blank characters wide) | \-------------------------------------------------------------------------/
Related Information:
�Lml - Specify Left Margin
�Lwp - Specify Width of Page
�Lcm* - Specify Left Margin for Individual Columns
Lmt - Specify Top Margin before Title
This option specifies the number of blank lines that appear at the top of the page before any other listing output is generated. The default value for this option is 2 blank lines.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-Lmt:2 (2 blank lines at the top of the page) | \-------------------------------------------------------------------------/
Related Information:
�Llp - Specify Length of Page
�Lmb - Specify Bottom Margin
�Lmb - Specify Middle Margin after Title
Lp - Generate Listing on Specific Pass
This option allows the user to control whether or not listing information is generated on a specific pass of the assembler. By default, the assembler only generates listing information on pass two. If the user is encountering "phase errors" or other unusual situations, it may be helpful to request a listing for the first pass as well.
The arguments to this option are either a series of numeric digits (without intervening white space) or the ALLor NONEkeywords. In the default assembler configuration, use of the -Lp:ALLform is equivalent to specifying -Lp:12, because the assembler makes two passes through the source file by default. The NONEkeyword prevents generation of any pass- related information in the listing file; however, symbol table information will still appear if selected.
When using numeric digits to specify the desired pass numbers, a listing will only be generated for the numbers given in the argument field; the default setting (or settings given by previous occurrences of the option) will be discarded.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-Lp:2 (listing on pass 2 only) | \-------------------------------------------------------------------------/
Lr - Control Display of Column Ruler
This switch to determines whether or not the column rulerappears at the top of each page in the listing output. This ruler is simply a line of information containing a string of alphabetic characters corresponding to each vertical column of listing information. The ruler reflects the current width, margins, and placement of the various listing columns at the time each page is printed, and helps the user to determine which column they are looking at. Turn this switch off if display of the column ruler is not desired.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |+Lr (show the column ruler in listing output) | \-------------------------------------------------------------------------/
Ls - Control Display of Symbol Table
This switch determines whether or not a summary of the symbol table contents is included at the end of the listing file. The default behavior is to omit the symbol table summary; turn this switch on to include it.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |-Ls (do not include symbol table in listing | | | | | |output) | \-------------------------------------------------------------------------/
Lt1 - Specify Title
This option allows the user to specify the text of a default title to be printed at the top of each listing page; there is no default title. Title information must be enclosed in double quotes "" if it contains white space characters.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-Lt1:<empty> (no default title information) | \-------------------------------------------------------------------------/
Lt2 - Specify Subtitle
This option allows the user to specify the text of a default subtitle to be printed at the top of each listing page; there is no default subtitle. Subtitle information must be enclosed in double quotes "" if it contains white space characters.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-Lt2:<empty> (no default subtitle information) | \-------------------------------------------------------------------------/
Lwp - Specify Width of Page
To correctly format the listing file for subsequent hardcopy output, the assembler must know how many physical characters of output will fit horizontally on the printed page. The default value for this option is 132 character positions.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-Lwp:132 (the default page width is 132 character | | | | | |positions) | \-------------------------------------------------------------------------/
Related Information:
�Lcm* - Specify Left Margin for Individual Columns
�Lcw* - Specify Width of Individual Columns
Lwt - Specify Tab Expansion Width
This option specifies the width of a tab character in blank spaces. Tab characters appearing in the source file are always expanded into blank spaces when output to the listing file; the default behavior is to expand tab characters to every eighth character position.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-Lwt:8 (tab characters are 8 character positions | | | | | |wide) | \-------------------------------------------------------------------------/
Message Control Options
This section describes all options related to the output and control of assembler messages. All Message Control Options begin with the letter "M".
M - Control Individual Messages or Groups
This option controls the types of messages that are displayed by manipulating message group identifier flagsor individual message numbers. Only messages with a severity of Warningor Infoare controllable with this option. Messages with a severity of Error, System, Fatal, Internal, or Usagecannot be suppressed.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-M:W+ (all warning messages are enabled) | \-------------------------------------------------------------------------/
All assembler messages are assigned a unique message number, and Warningor Infomessages may belong to one or more message groups. The message group identifier flags are defined as follows:
ALLAll warning and informational messages
BLKMessages regarding block structure violations
CODMessages regarding code generation
FILFile manipulation messages
IAll informational messages
PPPreprocessor messages
SRCSource file lexical analyzer messages
STAAssembly statistics
WAll warning messages
Any sequence of message groups or message numbers may be specified in the argument field of the Moption; each argument must be followed by a plus (+ ) or minus (-) character to turn the value on or off, and no intervening white space characters may appear between arguments.
See Assembler Messagesfor more information on message number values and the messages groups to which they belong.
Mb - Control Printing of the Assembler Banner
This switch controls whether or not the assembler start-up banner is printed. This switch is on by default; turn it off to suppress display of the banner.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |S |Yes |No |No |+Mb (Print the assembler banner) | \-------------------------------------------------------------------------/
Me - Set Number of Errors Before Assembler Aborts
This option specifies the maximum number of errors that the assembler will tolerate before ending the assembly. The default value is 50.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-Me:50 (abort the assembly after 50 errors are | | | | | |encountered) | \-------------------------------------------------------------------------/
Mwe - Treat Warnings as Errors
This switch tells the assembler that any Warning messages are to be treated as though they were errors; this causes the assembler to end with a non- zero exit code, and helps prevent any warning conditions from "passing by" unnoticed.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |-Mwe (warnings are not considered to be errors) | \-------------------------------------------------------------------------/
Object Control Options
This section describes all options related to the output and control of object file information. All Object Control Options begin with the letter "O".
Od - Line Number and Symbolic Debug Information in Object File
This switch controls whether or not all forms of debug information are included in the object file, and is a shorthand method of specifying the options to control line numberingand symbolicdebug information.
The parameterized version of this option may be used to specify the format of the debugging information. The setting of this value may be necessary depending on which linker is used to link the object file output, or on the debugger used to debug the executable. The argument must be one of the following keywords:
IBM32Generate debugging information in the 32-bit IBM (HLL) format. Executable code that is to be debugged with the IBM family of debuggers should use this setting. This is the default value if no parameter is specified.
MS16Generate debugging information in the 16-bit Microsoft (CodeView) format. You may need to use this setting if the object file output will be processed by a 16-bit linker, or if non-IBM debuggers will be utilized on the executable.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |(see default values for Ods and Odl) | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |-Od:IBM32 (use the IBM debug format) | \-------------------------------------------------------------------------/
Related Information:
�Odl - Line Numbering Information in Object File
�Ods - Symbolic Debug Information in Object File
Odl - Line Numbering Information in Object File
This switch controls whether or not line numbering debug information is included in the object file, thus allowing the assembler source file to be viewed from within a source-level debugger.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |-Odl (line numbering debug information is not | | | | | |included in object file) | \-------------------------------------------------------------------------/
Ods - Symbolic Debug Information in Object File
This switch controls whether or not symbolic debug information is included in the object file, thus allowing variables, labels, and expressions appearing in the assembler source file to be viewed from within a source- level debugger.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |-Ods (symbolic debug information is not included | | | | | |in object file) | \-------------------------------------------------------------------------/
Oug - Convert Global Identifiers to Uppercase
This switch controls whether external identifiers (declared with the EXTERNdirective) and public identifiers (declared with the PUBLICdirective) are converted to uppercase before writing them to the object file. By default, no conversion is performed and the symbols are written to the object file exactly as they were entered into the symbol table during assembly.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |-Oug (do not convert global identifiers to | | | | | |uppercase in object file) | \-------------------------------------------------------------------------/
Related Information:
�Scs - Control Case Sensitivity for Symbol Names
�Ous - Convert Group and Segment Names to Uppercase
Ous - Convert Group and Segment Names to Uppercase
This switch controls whether external group names (declared with the GROUPdirective) and segment names (declared with the SEGMENTdirective) are converted to uppercase before writing them to the object file. By default, no conversion is performed and the names are written to the object file exactly as they were entered into the symbol table during assembly.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |-Ous (do not convert group or segment names to | | | | | |uppercase in object file) | \-------------------------------------------------------------------------/
Related Information:
�Scs - Control Case Sensitivity for Symbol Names
�Oug - Convert Global Identifiers to Uppercase
Source Control Options
All options related to parsing or processing the input source stream are described in this section. All Source Control Options begin with the letter "S".
Sc - Control Case Sensitivity for All Identifiers
This switch controls whether or not all identifiers are case sensitive, and is a shorthand method of specifying the options for user identifiers and keywords.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |(see default values for Sck and Scs) | \-------------------------------------------------------------------------/
Related Information:
�Sck - Control Case Sensitivity for Keywords
�Scs - Control Case Sensitivity for Symbol Names
Sck - Control Case Sensitivity for Keywords
This switch controls whether or not language keywords are case sensitive. By default, this flag is turned off; thus the spellings SEGMENT, Segment, and segmentall refer to the same keyword. Turning this switch on would render the three spellings separate and distinct, and only the uppercase variant would be recognized as a keyword.
This option has no effect on user identifiers (see Scs - Control Case Sensitivity for Symbol Names) or processor mnemonics.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |-Sck (All language keywords are case insensitive) | \-------------------------------------------------------------------------/
Scs - Control Case Sensitivity for Symbol Names
This switch controls whether or not user identifiers are case sensitive. By default, this flag is turned on; thus the identifiers GEORGE, George, and georgeare separate and distinct. Turning this switch off would cause the three spellings to refer to the same identifier.
If a case-insensitive assembly is being performed (-Scs), the actual spelling of the identifier is not altered (e.g., converted to uppercase) when it is entered into the symbol table. The actual symbol definition controls the spelling of the identifier regardless of whether or not a case -insensitive assembly was performed. The only exception to this rule is when processing a PUBLICdirective under MASM 5.10 emulation; the identifier spelling, which appears in the PUBLICdirective is honored over the one appearing in the actual identifier definition.
This option has no effect on language keywords (see Sck - Control Case Sensitivity for Keywords), processor mnemonics, or register names.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |+Scs (All user identifiers are case sensitive) | \-------------------------------------------------------------------------/
Related Information:
�Oug - Convert Global Identifiers to Uppercase
�Ous - Convert Group and Segment Names to Uppercase
Sk - Control Use of Reserved Words as Labels
This switch controls whether or not certain assembler keywords (reserved words) may be used in the context of a code label (for example, TEST:). By default, this switch is off, and keywords may not be used as labels.
Even when this switch is turned on, there are severe restrictions on this capability. Processor mnemonics classify as the only "keywords" allowed in this situation, and only in the context of a code label(a label followed by a colon); using any reserved word as a directive name or data label is illegal.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |-Sk (Reserved words may not be used as labels) | \-------------------------------------------------------------------------/
Sfs - SHORT is Default Distance for Forward-Referenced Jumps
By default, when the assembler encounters an unqualified forward reference as the operand to a jump instruction, it makes a worst-case assumption that the target will not be close enough to allow generating the SHORTvariation of the instruction. Enough space is reserved to generate the NEARversion, and if it is determined later that the target is close enough, the SHORTvariation is generated and extra space is padded with NOPinstructions. This helps insure that source files will assemble without "out of range" errors, but wastes space when the NOPinstructions are generated.
Turning this switch on causes the assembler to assume that unqualified forward referenced jumps will always be reachable with the SHORTinstruction variation; should this not be the case, an error is generated and the user may recode the instruction using the NEARoverride.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |-Sfs (default distance is NEAR) | \-------------------------------------------------------------------------/
Sme - Control Visibility of MASM 6.00 Extended Mnemonics
This option controls whether or not the following processor mnemonics are recognized as keywords:
FLDENVD
FLDENVW
FNSAVED
FNSAVEW
FNSTENVD
FNSTENVW
FRSTORD
FRSTORW
FSAVED
FSAVEW
FSTENVD
FSTENVW
IRETF
IRETDF
LOOPD
LOOPW
LOOPED
LOOPEW
LOOPNED
LOOPNEW
LOOPNZD
LOOPNZW
LOOPZD
LOOPZW
POPD
POPW
PUSHD
PUSHW
These mnemonics were introduced in MASM 6.00 to allow explicit word (16-bit ) or double-word (32-bit) operations on 80386 or newer processors. Although MASM 5.10 supports the 80386 processor, it does not recognize these keywords. To avoid conflicts with preexisting macro libraries, ALP will also refuse to recognize these keywords when operating under MASM 5.10 compatibility mode (-Sv:M510) unless this option is turned on. This option is turned on automatically when the -Sv:M600 option is used.
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |S |Yes |Yes |Yes |-Sme (extended mnemonics are not enabled) | \-------------------------------------------------------------------------/
Related Information:
Sv - Set Version Behavior
This option controls the various modes of compatibility that the assembler is designed to emulate. The argument to the Svoption must be one of the following keywords:
ALPNative operating mode; don't emulate other assemblers
M510Emulate Microsoft MASM Version 5.10
M600Emulate Microsoft MASM Version 6.00
/-------------------------------------------------------------------------\ |Type|Global|Group|File|Default | |----+------+-----+----+--------------------------------------------------| |P |Yes |Yes |Yes |+Sv:ALP (do not emulate other assemblers) | \-------------------------------------------------------------------------/
Related Information:
�Sme - Control Visibility of MASM 6.00 Extended Mnemonics
The MASM2ALP Utility
MASM2ALP is a utility that accepts a MASM 5.10-compatible command line, transforms the command line parameters to the appropriate ALP syntax, and invokes alp.exeto perform the assembly. This allows the use of ALP instead of MASM in existing build environments without requiring major changes to makefiles or build scripts. You simply replace your existing MASM executable with MASM2ALP and resume operations.
MASM2ALP accepts the following MASM 5.10-style command line syntax:
masm2alp [ Options ] SourceFile [ , [ ObjectFile ] [ , [ ListingFile ] [ , [ CrossRefFile ] ] ] ] [ ; ]
Notes:
�Optionsare normally specified first on the command line, but may appear anywhere before the optional semicolon (;) terminator. Options may begin with either a slash (/) or a dash (-), but once the first option is encountered, no further mixing of introductory characters is allowed. Options are not case sensitive. Individual command line options are discussed below.
�Filename arguments are position-dependent. Commas (,) must be used to separate each argument and to maintain argument position, both when arguments are explicitly specified or when they are skipped (left unspecified). The filename argument descriptions are as follows:
SourceFileThis argument is mandatory, and specifies the name of the assembly language source file to be processed. If no filename suffix is supplied, a default value of ".asm" is assumed.
ObjectFileThe optional name of the object-code output file to be produced. If no filename suffix is supplied, a default value of ".obj" is assumed. If no ObjectFileargument is given, the root portion of the SourceFileargument is used as the name of the object file.
ListingFileThe optional name of the listing output file to be produced. If no filename suffix is supplied, a default value of ".lst" is assumed. If no ListingFileargument or -Loption is given, then no listing file is produced; otherwise the root portion of the SourceFileargument is used as the name of the listing file.
CrossRefFileThe optional name of the cross-reference output file. Since ALP does not support the creation of a cross-reference file, MASM2ALP ignores this argument.
�The trailing semicolon (;) operator may be used when no more filename arguments are to be specified and the default values are to be utilized for the remaining arguments. Any arguments or command line options that follow the semicolon will be ignored.
�MASM2ALP does not support the "prompting" behavior of Microsoft MASM when insufficient command line arguments are supplied. A syntax error is issued in this event.
Options:
MASM2ALP accepts the following command line options:
-AForces MASM to write segments to the object file in alphabetical order. MASM normally writes segments in source code order. MASM2ALP ignores this option.
-BnumberSets the size of the source file read buffer in 1K increments. MASM2ALP ignores this option.
-CTells MASM to create a cross-reference file. MASM2ALP ignores this option.
-dCauses the assembler to generate listing file information during both pass 1 and 2. By default, the assembler only generates listing file information during pass 2.
-Dsymbol[=value]Defines a symbol visible during assembly. An optional text value may also be specified for the symbol.
-ETells MASM to generate code compatible with floating-point emulation libraries. MASM2ALP ignores this option.
-HPrints the help information panel for the command line syntax.
-IpathSpecifies an INCLUDE file search path.
-L[A]Forces the creation of a listing output file. The -LAoption is an abbreviation for "list all", which forces macro expansions and false conditionals to also be included in the listing output.
- MLDirects the assembler to perform a case-sensitive assembly, and to preserve the case of external identifiers when writing them to the object file.
-MUDirects the assembler to perform a case-insensitive assembly, and to convert the names of external identifiers to uppercase when writing them to the object file. This is the default mode of operation for Microsoft MASM.
-MXDirects the assembler to perform a case-insensitive assembly, yet preserve the case of external identifiers when writing them to the object file.
-NPrevents the symbol table summary from being printed in the listing file .
-PCauses MASM to check for inpure code operations when assembling for a privileged mode processor. This feature is not supported by ALP, thus MASM2ALP ignores this option.
-SForces MASM to write segments to the object file in source code order, nullifying the effects of any previously encountered -Aoption. MASM2ALP ignores this option.
-XForces false conditionals to be included in the listing file output.
-ZCauses MASM to print the source line of any statement causing an assembly error to the standard output device. MASM2ALP ignores this option .
-ZDCauses line number debugging information to be included in the object file output.
-ZICauses both line number and symbolic debugging information to be included in the object file output.
Language Elements
The following sections describe the elements you use to build an ALP program source file.
Character Set
All elements in an assembler language source file are built from collections of characters contained in the character set, which are defined as:
- The uppercase and lowercase letters of the English alphabet
- The decimal digits 0 through 9
The following graphic characters:
~ ! " # $ % ^ & ' ( ) | * + , - . / : ; = < > ? [ \ ] _ { } @
The space and horizontal tab characters
The end of line character(s)
White Space
White space is a character or contiguous stream of characters that is ignored or removed from the input stream by the ALP preprocessor.
White space charactersare any contiguous sequence of one or more space or tab characters not enclosed in single or double quotes. White space characters are significant only in that they serve to separate language tokens from one another; they are removed from the input stream by the scanner.
Token:
Reserved-Word
Identifier
Literal
Punctuator
Description
The following sections describe the elements you use to build an ALP program source file.
Character Set
All elements in an assembler language source file are built from collections of characters contained in the character set, which are defined as:
- The uppercase and lowercase letters of the English alphabet
- The decimal digits 0 through 9
- The following graphic characters:
~ ! " # $ % ^ & ' ( ) | * + , - . / : ; = < > ? [ \ ] _ { } @
- The space and horizontal tab characters
- The end of line character(s)
White Space
White space is a character or contiguous stream of characters that is ignored or removed from the input stream by the ALP preprocessor.
White space charactersare any contiguous sequence of one or more space or tab characters not enclosed in single or double quotes. White space characters are significant only in that they serve to separate language tokens from one another; they are removed from the input stream by the scanner.
Syntax
Token:
Reserved-Word
Identifier
Literal
Punctuator
Reserved Words
This section describes all of the assembler reserved words.
Reserved-Word:
Preprocessor-Directive
Assembler-Directive
Processor-Mnemonic
Processor-Register
Scalar-TypeName
Distance-TypeName
Language-Name
Anonymous-Label-Alias
Location-Counter-Alias
Indeterminate-Value-Alias
Directive-Keyword
Operator-Keyword
Description
This section describes all of the assembler reserved words.
Syntax
Reserved-Word:
Preprocessor-Directive
Assembler-Directive
Processor-Mnemonic
Processor-Register
Scalar-TypeName
Distance-TypeName
Language-Name
Anonymous-Label-Alias
Location-Counter-Alias
Indeterminate-Value-Alias
Directive-Keyword
Operator-Keyword
Preprocessor Directives
Preprocessor Directivesare symbolic names that describe the various assembly-time text processing instructions interpreted by the preprocessor phase of the assembler.
Preprocessor-Directive:one of
CATSTR COMMENT ELSE ELSEIF ELSEIF1 ELSEIF2 ELSEIFB ELSEIFDEF ELSEIFDIF ELSEIFDIFI ELSEIFE ELSEIFIDN ELSEIFIDNI ELSEIFNB ELSEIFNDEF ENDIF ENDM EQU EXITM FOR FORC IF IF1 IF2 IFB IFDEF IFDIF IFDIFI IFE IFIDN IFIDNI IFNB IFNDEF INCLUDE INSTR IRP IRPC LOCAL MACRO PURGE REPEAT REPT SIZESTR SUBSTR
Description
Preprocessor Directivesare symbolic names that describe the various assembly-time text processing instructions interpreted by the preprocessor phase of the assembler.
Syntax
Preprocessor-Directive:one of
CATSTR COMMENT ELSE ELSEIF ELSEIF1 ELSEIF2 ELSEIFB ELSEIFDEF ELSEIFDIF ELSEIFDIFI ELSEIFE ELSEIFIDN ELSEIFIDNI ELSEIFNB ELSEIFNDEF ENDIF ENDM EQU EXITM FOR FORC IF IF1 IF2 IFB IFDEF IFDIF IFDIFI IFE IFIDN IFIDNI IFNB IFNDEF INCLUDE INSTR IRP IRPC LOCAL MACRO PURGE REPEAT REPT SIZESTR SUBSTR
Assembler Directives
Assembler Directivesare symbolic names that describe the various assembly- time instructions interpreted by the assembler itself.
Assembler-Directive:one of
.186 .286 .286C .286P .287 .386 .386C .386P .387 .486 .486C .486P .586 .586P .686 .686P .8086 .8087 ALIGN .ALPHA ASSUME %BIN .CODE COMM .CONST .CREF .DATA .DATA? DB DD DF DOSSEG .DOSSEG DQ DT DW ECHO END ENDP ENDS EQU .ERR .ERR1 .ERR2 .ERRB .ERRDEF .ERRDIF .ERRDIFI .ERRE .ERRIDN .ERRIDNI .ERRNB .ERRNDEF .ERRNZ EVEN EXTERN EXTERNDEF EXTRN .FARDATA .FARDATA? GROUP INCLUDELIB LABEL .LALL .LFCOND .LIST .LISTALL .LISTIF .LISTMACRO .LISTMACROALL LOCAL .MMX .MODEL NAME .NOCREF .NOLIST .NOLISTIF .NOLISTMACRO .NOMMX OPTION ORG %OUT PAGE PROC PUBLIC .RADIX RECORD .SALL SEGMENT .SEQ .SFCOND .STACK STRUC STRUCT SUBTITLE SUBTTL .TFCOND TITLE TYPEDEF UNION .XALL .XCREF .XLIST
Description
Assembler Directivesare symbolic names that describe the various assembly- time instructions interpreted by the assembler itself.
Syntax
Assembler-Directive:one of
.186 .286 .286C .286P .287 .386 .386C .386P .387 .486 .486C .486P .586 .586P .686 .686P .8086 .8087 ALIGN .ALPHA ASSUME %BIN .CODE COMM .CONST .CREF .DATA .DATA? DB DD DF DOSSEG .DOSSEG DQ DT DW ECHO END ENDP ENDS EQU .ERR .ERR1 .ERR2 .ERRB .ERRDEF .ERRDIF .ERRDIFI .ERRE .ERRIDN .ERRIDNI .ERRNB .ERRNDEF .ERRNZ EVEN EXTERN EXTERNDEF EXTRN .FARDATA .FARDATA? GROUP INCLUDELIB LABEL .LALL .LFCOND .LIST .LISTALL .LISTIF .LISTMACRO .LISTMACROALL LOCAL .MMX .MODEL NAME .NOCREF .NOLIST .NOLISTIF .NOLISTMACRO .NOMMX OPTION ORG %OUT PAGE PROC PUBLIC .RADIX RECORD .SALL SEGMENT .SEQ .SFCOND .STACK STRUC STRUCT SUBTITLE SUBTTL .TFCOND TITLE TYPEDEF UNION .XALL .XCREF .XLIST
Processor Mnemonics
Processor Mnemonicsare symbolic names given to the various instructions in the processor instruction set.
Processor-Mnemonic:one of
AAA AAD AAM AAS ADC ADD AND ARPL BOUND BSF BSR BSWAP BT BTC BTR BTS CALL CBW CDQ CLC CLD CLI CLTS CMC CMOVA CMOVAE CMOVB CMOVBE CMOVC CMOVE CMOVG CMOVGE CMOVL CMOVLE CMOVNA CMOVNAE CMOVNB CMOVNBE CMOVNC CMOVNE CMOVNG CMOVNGE CMOVNL CMOVNLE CMOVNO CMOVNP CMOVNS CMOVNZ CMOVO CMOVP CMOVPE CMOVPO CMOVS CMOVZ CMP CMPS CMPSB CMPSD CMPSW CMPXCHG CMPXCHG8B CPUID CWD CWDE DAA DAS DEC DIV EMMS ENTER ESC F2XM1 FABS FADD FADDP FBLD FBSTP FCHS FCLEX FCMOVB FCMOVBE FCMOVE FCMOVNB FCMOVNBE FCMOVNE FCMOVNU FCMOVU FCOM FCOMI FCOMIP FCOMP FCOMPP FCOS FDECSTP FDISI FDIV FDIVP FDIVR FDIVRP FENI FFREE FIADD FICOM FICOMP FIDIV FIDIVR FILD FIMUL FINCSTP FINIT FIST FISTP FISUB FISUBR FLD FLD1 FLDCW FLDENV FLDENVD FLDENVW FLDL2E FLDL2T FLDLG2 FLDLN2 FLDPI FLDZ FMUL FMULP FNCLEX FNDISI FNENI FNINIT FNOP FNSAVE FNSAVED FNSAVEW FNSTCW FNSTENV FNSTENVD FNSTENVW FNSTSW FPATAN FPREM FPREM1 FPTAN FRNDINT FRSTOR FRSTORD FRSTORW FSAVE FSAVED FSAVEW FSCALE FSETPM FSIN FSINCOS FSQRT FST FSTCW FSTENV FSTENVD FSTENVW FSTP FSTSW FSUB FSUBP FSUBR FSUBRP FTST FUCOM FUCOMI FUCOMIP FUCOMP FUCOMPP FWAIT FXAM FXCH FXTRACT FYL2X FYL2XP1 HLT IDIV IMUL IN INC INS INSB INSD INSW INT INTO INVD INVLPG IRET IRETD IRETDF IRETF JA JAE JB JBE JC JCXZ JE JECXZ JG JGE JL JLE JMP JNA JNAE JNB JNBE JNC JNE JNG JNGE JNL JNLE JNO JNP JNS JNZ JO JP JPE JPO JS JZ LAHF LAR LDS LEA LEAVE LES LFS LGDT LGS LIDT LLDT LMSW LOCK LODS LODSB LODSD LODSW LOOP LOOPD LOOPE LOOPED LOOPEW LOOPNE LOOPNED LOOPNEW LOOPNZ LOOPNZD LOOPNZW LOOPW LOOPZ LOOPZD LOOPZW LSL LSS LTR MOV MOVD MOVQ MOVS MOVSB MOVSD MOVSW MOVSX MOVZX MUL NEG NOP NOT OR OUT OUTS OUTSB OUTSD OUTSW PACKSSDW PACKSSWB PACKUSWB PADDB PADDD PADDSB PADDSW PADDUSB PADDUSW PADDW PAND PANDN PCMPEQB PCMPEQD PCMPEQW PCMPGTB PCMPGTD PCMPGTW PMADDWD PMULHW PMULLW POP POPA POPAD POPD POPF POPFD POPW POR PSLLD PSLLQ PSLLW PSRAD PSRAW PSRLD PSRLQ PSRLW PSUBB PSUBD PSUBSB PSUBSW PSUBUSB PSUBUSW PSUBW PUNPCKHBW PUNPCKHDQ PUNPCKHWD PUNPCKLBW PUNPCKLDQ PUNPCKLWD PUSH PUSHA PUSHAD PUSHD PUSHF PUSHFD PUSHW PXOR RCL RCR RDMSR RDPMC RDTSC REP REPE REPNE REPNZ REPZ RET RETF RETN ROL ROR RSM SAHF SAL SAR SBB SCAS SCASB SCASD SCASW SETA SETAE SETB SETBE SETC SETE SETG SETGE SETL SETLE SETNA SETNAE SETNB SETNBE SETNC SETNE SETNG SETNGE SETNL SETNLE SETNO SETNP SETNS SETNZ SETO SETP SETPE SETPO SETS SETZ SGDT SHL SHLD SHR SHRD SIDT SLDT SMSW STC STD STI STOS STOSB STOSD STOSW STR SUB TEST UC2 VERR VERW WAIT WBINVD WRMSR XADD XCHG XLAT XLATB XOR
Description
Processor Mnemonicsare symbolic names given to the various instructions in the processor instruction set.
Syntax
Processor-Mnemonic:one of
AAA AAD AAM AAS ADC ADD AND ARPL BOUND BSF BSR BSWAP BT BTC BTR BTS CALL CBW CDQ CLC CLD CLI CLTS CMC CMOVA CMOVAE CMOVB CMOVBE CMOVC CMOVE CMOVG CMOVGE CMOVL CMOVLE CMOVNA CMOVNAE CMOVNB CMOVNBE CMOVNC CMOVNE CMOVNG CMOVNGE CMOVNL CMOVNLE CMOVNO CMOVNP CMOVNS CMOVNZ CMOVO CMOVP CMOVPE CMOVPO CMOVS CMOVZ CMP CMPS CMPSB CMPSD CMPSW CMPXCHG CMPXCHG8B CPUID CWD CWDE DAA DAS DEC DIV EMMS ENTER ESC F2XM1 FABS FADD FADDP FBLD FBSTP FCHS FCLEX FCMOVB FCMOVBE FCMOVE FCMOVNB FCMOVNBE FCMOVNE FCMOVNU FCMOVU FCOM FCOMI FCOMIP FCOMP FCOMPP FCOS FDECSTP FDISI FDIV FDIVP FDIVR FDIVRP FENI FFREE FIADD FICOM FICOMP FIDIV FIDIVR FILD FIMUL FINCSTP FINIT FIST FISTP FISUB FISUBR FLD FLD1 FLDCW FLDENV FLDENVD FLDENVW FLDL2E FLDL2T FLDLG2 FLDLN2 FLDPI FLDZ FMUL FMULP FNCLEX FNDISI FNENI FNINIT FNOP FNSAVE FNSAVED FNSAVEW FNSTCW FNSTENV FNSTENVD FNSTENVW FNSTSW FPATAN FPREM FPREM1 FPTAN FRNDINT FRSTOR FRSTORD FRSTORW FSAVE FSAVED FSAVEW FSCALE FSETPM FSIN FSINCOS FSQRT FST FSTCW FSTENV FSTENVD FSTENVW FSTP FSTSW FSUB FSUBP FSUBR FSUBRP FTST FUCOM FUCOMI FUCOMIP FUCOMP FUCOMPP FWAIT FXAM FXCH FXTRACT FYL2X FYL2XP1 HLT IDIV IMUL IN INC INS INSB INSD INSW INT INTO INVD INVLPG IRET IRETD IRETDF IRETF JA JAE JB JBE JC JCXZ JE JECXZ JG JGE JL JLE JMP JNA JNAE JNB JNBE JNC JNE JNG JNGE JNL JNLE JNO JNP JNS JNZ JO JP JPE JPO JS JZ LAHF LAR LDS LEA LEAVE LES LFS LGDT LGS LIDT LLDT LMSW LOCK LODS LODSB LODSD LODSW LOOP LOOPD LOOPE LOOPED LOOPEW LOOPNE LOOPNED LOOPNEW LOOPNZ LOOPNZD LOOPNZW LOOPW LOOPZ LOOPZD LOOPZW LSL LSS LTR MOV MOVD MOVQ MOVS MOVSB MOVSD MOVSW MOVSX MOVZX MUL NEG NOP NOT OR OUT OUTS OUTSB OUTSD OUTSW PACKSSDW PACKSSWB PACKUSWB PADDB PADDD PADDSB PADDSW PADDUSB PADDUSW PADDW PAND PANDN PCMPEQB PCMPEQD PCMPEQW PCMPGTB PCMPGTD PCMPGTW PMADDWD PMULHW PMULLW POP POPA POPAD POPD POPF POPFD POPW POR PSLLD PSLLQ PSLLW PSRAD PSRAW PSRLD PSRLQ PSRLW PSUBB PSUBD PSUBSB PSUBSW PSUBUSB PSUBUSW PSUBW PUNPCKHBW PUNPCKHDQ PUNPCKHWD PUNPCKLBW PUNPCKLDQ PUNPCKLWD PUSH PUSHA PUSHAD PUSHD PUSHF PUSHFD PUSHW PXOR RCL RCR RDMSR RDPMC RDTSC REP REPE REPNE REPNZ REPZ RET RETF RETN ROL ROR RSM SAHF SAL SAR SBB SCAS SCASB SCASD SCASW SETA SETAE SETB SETBE SETC SETE SETG SETGE SETL SETLE SETNA SETNAE SETNB SETNBE SETNC SETNE SETNG SETNGE SETNL SETNLE SETNO SETNP SETNS SETNZ SETO SETP SETPE SETPO SETS SETZ SGDT SHL SHLD SHR SHRD SIDT SLDT SMSW STC STD STI STOS STOSB STOSD STOSW STR SUB TEST UC2 VERR VERW WAIT WBINVD WRMSR XADD XCHG XLAT XLATB XOR
Processor Registers
Processor Registersare the symbolic names assigned to the various internal processor registers. They are normally used as operands to processor instructions.
Processor-Register:
General-Purpose-Register
Segment-Register
Control-Register
Debug-Register
Test-Register
MMX-Register
Floating-Point-Register
General-Purpose-Register:
8-Bit-Register
16-Bit-Register
32-Bit-Register
8-Bit-Register:one of
AL AH BL BH CL CH DL DH
16-Bit-Register:one of
AX BX CX DX DI SI BP SP
32-Bit-Register:one of
EAX EBX ECX EDX EDI ESI EBP ESP
Segment-Register:one of
CS DS ES FS GS SS
Control-Register:one of
CR0 CR2 CR3 CR4
Debug-Register:one of
DR0 DR1 DR2 DR3 DR4 DR5 DR6 DR7
Test-Register:one of
TR3 TR4 TR5 TR6 TR7
MMX-Register:one of
MM0 MM1 MM2 MM3 MM4 MM5 MM6 MM7
Floating-Point-Register:
ST
Description
Processor Registersare the symbolic names assigned to the various internal processor registers. They are normally used as operands to processor instructions.
Syntax
Processor-Register:
General-Purpose-Register
Segment-Register
Control-Register
Debug-Register
Test-Register
MMX-Register
Floating-Point-Register
General-Purpose-Register:
8-Bit-Register
16-Bit-Register
32-Bit-Register
8-Bit-Register:one of
AL AH BL BH CL CH DL DH
16-Bit-Register:one of
AX BX CX DX DI SI BP SP
32-Bit-Register:one of
EAX EBX ECX EDX EDI ESI EBP ESP
Segment-Register:one of
CS DS ES FS GS SS
Control-Register:one of
CR0 CR2 CR3 CR4
Debug-Register:one of
DR0 DR1 DR2 DR3 DR4 DR5 DR6 DR7
Test-Register:one of
TR3 TR4 TR5 TR6 TR7
MMX-Register:one of
MM0 MM1 MM2 MM3 MM4 MM5 MM6 MM7
Floating-Point-Register:
ST
Scalar Type Names
Scalar Type Namesare the symbolic names given to the integral data types. These are the fundamental types of data upon which the processor can directly operate.
Scalar-TypeName:
BYTE
SBYTE
WORD
SWORD
DWORD
SDWORD
REAL4
FWORD
QWORD
REAL8
TBYTE
REAL10
Description
Scalar Type Namesare the symbolic names given to the integral data types. These are the fundamental types of data upon which the processor can directly operate.
Syntax
Scalar-TypeName:
BYTE
SBYTE
WORD
SWORD
DWORD
SDWORD
REAL4
FWORD
QWORD
REAL8
TBYTE
REAL10
Distance Type Names
Distance Type Namesare the symbolic names given to the integral types of pointers directly supported by the processor. Their names reflect a fundamental property of the Intel processor architecture known as distance. The type of pointer is defined by the distancerequired to reach the information to which it points.
Distance-TypeName:
NEAR
NEAR16
NEAR32
FAR
FAR16
FAR32
Description
Distance Type Namesare the symbolic names given to the integral types of pointers directly supported by the processor. Their names reflect a fundamental property of the Intel processor architecture known as distance. The type of pointer is defined by the distancerequired to reach the information to which it points.
Syntax
Distance-TypeName:
NEAR
NEAR16
NEAR32
FAR
FAR16
FAR32
Language Names
Language Namesrefer to the various high level programming languages (or more specifically, the calling conventions used by such languages) with which the assembler has the ability to interface.
Language-Name:
C
SYSCALL
STDCALL
PASCAL
FORTRAN
BASIC
OPTLINK
Description
Language Namesrefer to the various high level programming languages (or more specifically, the calling conventions used by such languages) with which the assembler has the ability to interface.
Syntax
Language-Name:
C
SYSCALL
STDCALL
PASCAL
FORTRAN
BASIC
OPTLINK
Anonymous Label Aliases
The Anonymous Label Aliasesare reserved symbolic names that return a context-sensitive value when referenced in expressions.
The reserved name @B(backward reference) returns the internally generated name representing the nearest @@:code label appearing before the current location in the input stream.
The reserved name @F(forward reference) returns the internally generated name representing the nearest @@:code label appearing after the current location in the input stream.
Anonymous-Label-Alias:
@B
@F
Description
The Anonymous Label Aliasesare reserved symbolic names that return a context-sensitive value when referenced in expressions.
The reserved name @B(backward reference) returns the internally generated name representing the nearest @@:code label appearing before the current location in the input stream.
The reserved name @F(forward reference) returns the internally generated name representing the nearest @@:code label appearing after the current location in the input stream.
Syntax
Anonymous-Label-Alias:
@B
@F
Location Counter Alias
The Location Counter Aliasis a reserved name used in expressions to return the offset within the current segment or structure being assembled.
Location-Counter-Alias:
$
Description
The Location Counter Aliasis a reserved name used in expressions to return the offset within the current segment or structure being assembled.
Syntax
Location-Counter-Alias:
$
Indeterminate Value Alias
The Indeterminate Value Aliasis a reserved name used in expressions to represent an uninitialized value.
Indeterminate-Value-Alias:
?
Description
The Indeterminate Value Aliasis a reserved name used in expressions to represent an uninitialized value.
Syntax
Indeterminate-Value-Alias:
?
Directive Keywords
Directive Keywordsare symbolic names recognized and used in the body of various assembler directives.
Directive-Keyword:
ABS AT BASIC C CASEMAP CODE COMMON DOTNAME EMULATOR EPILOGUE ERROR EXPORT EXPR16 EXPR32 FARSTACK FLAT FORTRAN HUGE LANGUAGE LARGE LJMP MEDIUM NEARSTACK NODOTNAME NOEMULATOR NOKEYWORD NOLANGUAGE NOLJMP NONE NOOLDMACROS NOOLDSTRUCTS NOREADONLY NOSCOPED NOSIGNEXTEND NOTHING NOTPUBLIC OLDMACROS OLDSTRUCTS OPTLINK OS_DOS OS_OS2 PAGE PARA PASCAL PRIVATE PROC PROLOGUE PUBLIC READONLY SCOPED SEGMENT SIGNEXTEND SMALL STACK STDCALL SYSCALL TINY USE16 USE32 USES
Description
Directive Keywordsare symbolic names recognized and used in the body of various assembler directives.
Syntax
Directive-Keyword:
ABS AT BASIC C CASEMAP CODE COMMON DOTNAME EMULATOR EPILOGUE ERROR EXPORT EXPR16 EXPR32 FARSTACK FLAT FORTRAN HUGE LANGUAGE LARGE LJMP MEDIUM NEARSTACK NODOTNAME NOEMULATOR NOKEYWORD NOLANGUAGE NOLJMP NONE NOOLDMACROS NOOLDSTRUCTS NOREADONLY NOSCOPED NOSIGNEXTEND NOTHING NOTPUBLIC OLDMACROS OLDSTRUCTS OPTLINK OS_DOS OS_OS2 PAGE PARA PASCAL PRIVATE PROC PROLOGUE PUBLIC READONLY SCOPED SEGMENT SIGNEXTEND SMALL STACK STDCALL SYSCALL TINY USE16 USE32 USES
Operator Keywords
Operator Keywordsare symbolic names used in expressions to denote an operation to be performed on one or more operands.
Operator-Keyword:
AND DUP EQ GE GT HIGH HIGHWORD LE LENGTH LENGTHOF LOW LOWWORD LT MASK MOD NE NOT OFFSET OPATTR OR PTR SEG SHL SHORT SHR SIZE SIZEOF THIS .TYPE TYPE WIDTH XOR
Description
Operator Keywordsare symbolic names used in expressions to denote an operation to be performed on one or more operands.
Syntax
Operator-Keyword:
AND DUP EQ GE GT HIGH HIGHWORD LE LENGTH LENGTHOF LOW LOWWORD LT MASK MOD NE NOT OFFSET OPATTR OR PTR SEG SHL SHORT SHR SIZE SIZEOF THIS .TYPE TYPE WIDTH XOR
Identifiers
This section describes the syntax for identifiers and the various types of information they can be made to represent.
Identifier:
Normal-Identifier
Dot-Identifier
Normal-Identifier
NonDigit
Normal-Identifier Identifer-Character
Dot-Identifier
. Normal-Identifier
Identifier-Character
NonDigit
Digit
NonDigit:one of
_ $ @ ? a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Digit:one of
0 1 2 3 4 5 6 7 8 9
Description
This section describes the syntax for identifiers and the various types of information they can be made to represent.
Syntax
Identifier:
Normal-Identifier
Dot-Identifier
Normal-Identifier
NonDigit
Normal-Identifier Identifer-Character
Dot-Identifier
. Normal-Identifier
Identifier-Character
NonDigit
Digit
NonDigit:one of
_ $ @ ? a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Digit:one of
0 1 2 3 4 5 6 7 8 9
Identifier Types
This section describes the various types of identifiers that the assembler will create and manipulate.
Identifier-Type:
EquateName
FieldName
GroupName
LabelName
MacroName
SegmentName
UserDefined-TypeName
Description
This section describes the various types of identifiers that the assembler will create and manipulate.
Definition
Identifier-Type:
EquateName
FieldName
GroupName
LabelName
MacroName
SegmentName
UserDefined-TypeName
Equate Name
Definition
EquateName:
Numeric-EquateName
Text-EquateName
Description
An EquateNameis a symbolic identifier that is associated with an expression or a body of text. The assembler substitutes the value of the EquateNameat the point of reference.
Numeric Equate Name
An identifier becomes a Numeric-EquateNamewhen it is defined in a EQUor =directive. Procedure parameternames and local variablenames are also created as Numeric-EquateNames, but are visible only from within the procedure where they are defined. All other Numeric-EquateNamesare globally-scoped identifiers visible across the entire module.
A Numeric-EquateNamemay only be referenced from within expressions, as its replacement value is itself an expression.
Text Equate Name
A Text-EquateNameis a globally-scoped identifier created during the processing of a EQUpreprocessor directive. A Text-EquateNameis associated with a body of text whose content may not span across line breaks. In certain contexts the assembler replaces the Text-EquateNamewith the text that it represents and recursively evaluates the result.
Field Name
Definition
FieldName:
Record-FieldName
Structure-FieldName
Union-FieldName
Description
An identifier becomes a FieldNamewhen it is defined within a RECORD, STRUCT, or UNIONdirective.
Record Field Name
A Record-FieldNameis a globally-scoped identifier created during the processing of a RECORDdirective. It is a special variation of a Numeric- EquateNameand can be used in the same contexts.
Structure Field Name
An identifier becomes a Structure-FieldNamewhen it is defined in a STRUCTdirective. If the assembler is operating in M510mode, or if the OPTION OLDSTRUCTSdirective has been specified, then a Structure-FieldNameis a globally-scoped identifier treated as a special variation of a Numeric- EquateNameand can be used in the same contexts. Otherwise, a Structure- FieldNameis private to the defining structure and is only accessible in expressions through use of the Structure/Union Field Selection (. Operator) .
Union Field Name
An identifier becomes a Union-FieldNamewhen it is defined in a UNIONdirective. A Union-FieldNameis private to the defining union and is only accessible in expressions through use of the Structure/Union Field Selection (. Operator).
Group Name
A GroupNameis a globally-scoped identifier created during the processing of a GROUPdirective. It is referenced from within expressions.
Label Name
Definition
LabelName:
Code-LabelName
Data-LabelName
Description
A LabelNameis globally-scoped identifier that is associated with a program address at application run-time. It has an explicit or inherited Type-Declaration, and an optional Language-Attribute. These attributes are described in the following sections.
Type Declaration
The type declaration associated with a label name depends on how the label was defined. See the Code-LabelNameand Data-LabelNamesections for descriptions on how this attribute is assigned.
Language Attribute
A LabelNamecan have an assigned Language-Attribute, set either implicitly through the use of a Language-Namekeyword in the body of a .MODELor OPTIONdirective, or explicitly through the use of an overriding Language- Namekeyword in the body of a EXTERN/EXTRN, EXTERNDEF, PROC, or PUBLICdirective. The Language-Attributedetermines the exact spelling of the LabelNameidentifier when it is written to the object file. According to the Language-Attribute, identifier spellings are modified from their appearance in the assembly language source module as follow:
/-----------------------------------------------------------\ |LANGUAGE ATTRIBUTE|IDENTIFIER SPELLING | |------------------+----------------------------------------| |OPTLINK, SYSCALL |No modifications are made to the | | |identifier when written to the object | | |file. | |------------------+----------------------------------------| |C, STDCALL |A leading underscore character is | | |appended to the front of the name. | |------------------+----------------------------------------| |BASIC, FORTRAN, |All characters in the identifier are | |PASCAL |converted to uppercase. | \-----------------------------------------------------------/
Code Label Name
Definition
Code-LabelName:
Target-LabelName
Procedure-LabelName
Description
A Code-LabelNameis an identifier that is associated with an executable code address at application run-time. There are two types of Code- LabelNames: Target-LabelNamesand Procedure-LabelNames.
Target Label Name
An identifier becomes a Target-LabelNamewhen it is defined with a :, ::, or LABELdirective.
If a Target-LabelNamecreated with a single colon (:) is defined within the body of a procedure, then the name is visible only from within that procedure unless operating in M510mode (and no .MODELdirective with a Language-Namehas been specified), or unless the OPTION NOSCOPEDdirective has been specified.
A Target-LabelNamedefined outside the body of a procedure is visible to the entire module, and may also be given PUBLICvisibility.
Procedure Label Name
An identifier becomes a Procedure-LabelNamewhen it is defined in a PROCdirective.
Data Label Name
A Data-LabelNameis an identifier that is the address of a program variable at application run-time. An identifier becomes a Data-LabelNamewhen it is named in a data allocation statement, or when a scalar, aggregate, or vector type is associated with the identifier named in a LABEL, EXTERN/ EXTRN, EXTERNDEF, or COMMdirective.
Macro Name
A MacroNameis a globally-scoped identifier created during the processing of a MACROdirective. It is associated with a multi-line body of text. A MacroNamemay only be used in contexts where a normal assembler directive is expected.
Macro Parameter Name
An identifier becomes a Macro-ParameterNamewhen it is named as a parameter to a macro in a MACROdirective. It is associated with a body of text whose content may not span across line breaks. It is only recognized and acted upon from within the body of a macro expansion.
Segment Name
A SegmentNameis a globally-scoped identifier created during the processing of a SEGMENTdirective. It may be referenced from within expressions or in the body of a GROUPdirective.
User-Defined Type Name
Definition
UserDefined-TypeName:
Record-TypeName
Structure-TypeName
Typedef-TypeName
Union-TypeName
Description
An identifier becomes a UserDefined-TypeNamewhen it is defined within a RECORD, STRUCT, TYPEDEF, or UNIONdirective.
Record Type Name
A Record-TypeNameis a globally-scoped identifier created during the processing of a RECORDdirective. It is recognized from within Expressions , Type-Declarations, or as a pseudo-directive in a data allocation statement.
Structure Type Name
A Structure-TypeNameis a globally-scoped identifier created during the processing of a STRUCTdirective. It is recognized from within Expressions , Type-Declarations, or as a pseudo-directive in a data allocation statement.
Typedef Type Name
A Typedef-TypeNameis a globally-scoped identifier created during the processing of a TYPEDEFdirective. It is recognized from within Expression s, Type-Declarations, or as a pseudo-directive in a data allocation statement.
Union Type Name
A Union-TypeNameis a globally-scoped identifier created during the processing of a UNIONdirective. It is recognized from within Expressions, Type-Declarations, or as a pseudo-directive in a data allocation statement.
Predefined Identifiers
The following sections describe the predefined identifiers created by the assembler. When a case-sensitive assembly is being performed, the predefined identifiers must be spelled exactly as they appear in the following descriptions with respect to uppercase and lowercase characters.
Segment Information
The following sections describe the predefined identifiers created by the assembler in support of segment manipulation.
@code
The @codeidentifier is a Text-EquateNamecreated by the assembler when a . MODELdirective is encountered, at which time the assembler performs an automatic ASSUME CS:@codeoperation. The @codesymbol is not defined if a .MODELdirective has not been issued.
Under MASM 5.10 emulation, the @codesymbol is set to the name of the implicitly-defined default code segment (the segment opened when a .CODEdirective is used) and its value is never changed. In other modes, the @ codesymbol is updated to reflect whatever segment is opened by using .CODE , whether defined implicitly or as an explicit parameter to the .CODEdirective.
The value assigned to the @codesymbol when the default code segment is opened is determined by the memory model as follows:
Memory Model Value for @code
TINY DGROUP
SMALL _TEXT
MEDIUM module_TEXT
COMPACT_TEXT
LARGE module_TEXT
HUGE module_TEXT
FLAT CODE32
The moduleentry is replaced with base file name of the top-level module being assembled.
@CodeSize
The @CodeSizeidentifier is a Numeric-EquateNamecreated by the assembler when a .MODELdirective is encountered. @CodeSizeindicates whether code segments created by the .CODEdirective are named such that the linker will combine them into a single (NEAR) segment or into multiple (FAR) segments. The @CodeSizesymbol is set to 0 (NEAR) for the TINY, SMALL, COMPACT,and FLATmemory models, and to 1 (FAR) for the MEDIUM, LARGE,and HUGEmemory models. The @CodeSizesymbol is not defined if a .MODELdirective has not been issued.
@CurSeg
The @CurSegidentifier is a Text-EquateNamedefined by the assembler to hold the name of the currently opened segment. If no segment is currently open, @CurSegwill expand into an empty string.
@data
The @dataidentifier is a Text-EquateNamecreated by the assembler when a . MODELdirective is encountered. It expands to the group name shared by all of the near data segments. If a .MODEL FLAThas been issued, the @dataidentifier expands to FLAT. For all other memory models, it expands to DGROUP.
@DataSize
The @DataSizeidentifier is a Numeric-EquateNamecreated by the assembler when a .MODELdirective is encountered, and represents the default data distance. Depending on the currently selected memory model, the @DataSizeidentifier is set to the following values:
TINY 0
SMALL 0
COMPACT1
MEDIUM 1
LARGE 1
HUGE 2
FLAT 0
@Model
The @Modelidentifier is a Numeric-EquateNamecreated by the assembler when a .MODELdirective is encountered, and is set to a unique value for each memory model. The values are as follows:
TINY 1
SMALL 2
COMPACT3
MEDIUM 4
LARGE 5
HUGE 6
FLAT 7
@WordSize
The @WordSizeidentifier is a Numeric-EquateNamethat reflects the address size attribute of the current segment. It is set to 2 for a USE16segment, and 4 for a USE32segment. If no segment is currently open, it reflects the default address size as determined by the currently selected processor.
Version Information
These identifiers offer methods of testing the various operating modes of the assembler to determine what features are activated or disabled, or how the assembler will behave under various conditions.
@Alp
The @Alpidentifier is a Text-EquateNamethat can be tested to determine if ALP is assembling the source file (versus some other assembler). It is always set to the string 100.
@AlpMajor
The @AlpMajoridentifier is a Text-EquateNamethat reflects the majorportion of the three-part assembler version number. It is padded on the right with zeros to allow major version number comparisions independant of the minor version and revisions numbers. See @AlpVersionfor more information.
This identifier is only defined in ALPmode.
@AlpMinor
The @AlpMinoridentifier is a Text-EquateNamethat reflects the minorportion of the three-part assembler version number. It is padded on the right with zeros to allow minor version number comparisions independant of the major version and revisions numbers. See @AlpVersionfor more information.
This identifier is only defined in ALPmode.
@AlpRevision
The @AlpRevisionidentifier is a Text-EquateNamethat reflects the revisionportion of the three-part assembler version number. It allows revision number comparisions independant of the major and minor version numbers. See @AlpVersionfor more information.
This identifier is only defined in ALPmode.
@AlpVersion
The @AlpVersionidentifier is a Text-EquateNamethat reflects the full three-part assembler version number. This is an encoding of the version number printed in the program banner when the assembler is invoked. This number and its requisite parts may be tested to determine the presence or absence of features provided by the assembler.
The assembler version number consists of three parts:
1.The major version number (one digit)
2.The minor version number (two digits)
3.The revision number (three digits)
In the assembler banner, the numbers are separated by the period (.) character; the period is removed from the text defined by the predefined identifiers.
For example, if the major version number is 1, the minor version number is 2, and the revision number is 3, then the full version number is printed in the assembler banner as 1.02.003, and the various predefined version identifers would be set as follows:
@AlpVersion 102003 @AlpMajor 100000 @AlpMinor 2000 @AlpRevision 003
This identifier is only defined in ALPmode.
@Cpu
The @Cpuidentifier is a Numeric-EquateNamethat reflects the currently selected processor for which ALP is assembling instructions. This value is affected by issuing a Processor-Control-Directive, and is a bit map that indicates the currently active processor instruction set(s).
/------------------------------------------------------\ |B|A|9|8|7|6|5|4|3|2|1|0|BIT SET IF ASSEMBLING FOR: | |-+-+-+-+-+-+-+-+-+-+-+-+------------------------------| | | | | | | | | | | | |1|8086/8088 | |-+-+-+-+-+-+-+-+-+-+-+-+------------------------------| | | | | | | | | | | |1| |80186 | |-+-+-+-+-+-+-+-+-+-+-+-+------------------------------| | | | | | | | | | |1| | |80286 | |-+-+-+-+-+-+-+-+-+-+-+-+------------------------------| | | | | | | | | |1| | | |80386 | |-+-+-+-+-+-+-+-+-+-+-+-+------------------------------| | | | | | | | |1| | | | |80486 | |-+-+-+-+-+-+-+-+-+-+-+-+------------------------------| | | | | | | |1| | | | | |80586 (Pentium) | |-+-+-+-+-+-+-+-+-+-+-+-+------------------------------| | | | | | |1| | | | | | |80686 (Pentium Pro) | |-+-+-+-+-+-+-+-+-+-+-+-+------------------------------| | | | | |1| | | | | | | |Privileged mode | |-+-+-+-+-+-+-+-+-+-+-+-+------------------------------| | | | |1| | | | | | | | |8087 | |-+-+-+-+-+-+-+-+-+-+-+-+------------------------------| | | |1| | | | | | | | | |MMX Extensions | |-+-+-+-+-+-+-+-+-+-+-+-+------------------------------| | |1| | | | | | | | | | |80287 | |-+-+-+-+-+-+-+-+-+-+-+-+------------------------------| |1| | | | | | | | | | | |80387 | \------------------------------------------------------/
@Version
The @Versionidentifier is a Text-EquateNamethat reflects the MASM- compatible version number. The current emulation mode of the assembler affects the value of this symbol as follows:
M510510
M600600
ALP4294967295 (the highest possible value for an unsigned 32-bit integer)
Date and Time Information
These identifiers allow the programmer to query the system date or time during the assembly. Each time they are referenced, a new system request for the current date and time is made and the values held in the identifiers are refreshed.
@Date
The @Dateidentifier is a Text-EquateNamethat is set to the current system date. If the current operating mode is M600, the date is returned in the MM/DD/YY format. In native ALPmode, the date is returned in the MM/DD/ YYYY format.
The @Dateidentifier is not available in M510mode.
@Time
The @Timeidentifier is a Text-EquateNamethat is set to the current system time in 24-hour HH:MM:SS format.
The @Timeidentifier is not available in M510mode.
File Information
These identifiers return information about the file(s) being assembled.
@FileName
The @FileNameidentifier is a Text-EquateNamethat is set to the base name of the main file being assembled (as it appears on the command line).
@Line
The @Lineidentifier is a Numeric-EquateNamethat is set to the current source line number in the file currently being assembled.
The @Lineidentifier is not available in M510mode.
Literals
Literalsare the notational method whereby numeric values or strings of character data are represented in the source stream. Literals are also commonly referred to as constants(especially in the context of high level languages) because they typically represent objects whose values do not change throughout the life of the assembly or compilation. However, literals should not be confused with run-time "constants" ("read-only" data items allocated by the programmer); they are assembly-time tokens used by the assembler to represent numeric values or character strings.
Literal:
Floating-Point-Literal
Integer-Literal
String-Literal
Description
Literalsare the notational method whereby numeric values or strings of character data are represented in the source stream. Literals are also commonly referred to as constants(especially in the context of high level languages) because they typically represent objects whose values do not change throughout the life of the assembly or compilation. However, literals should not be confused with run-time "constants" ("read-only" data items allocated by the programmer); they are assembly-time tokens used by the assembler to represent numeric values or character strings.
Syntax
Literal:
Floating-Point-Literal
Integer-Literal
String-Literal
Integer Literals
An integer literalrepresents a fixed-point numeric value. An integer literal must begin with one of the numeric digits 0 - 9, and may be optionally terminated with a suffix character called a radix specifier. The radix specifier tells the assembler whether the literal is to be interpreted as a base 2 (binary), 8 (octal), 10 (decimal), or 16 ( hexadecimal) number. If the literal is not suffixed with a radix specifier , the assembler uses the value of the current radix to determine the base of the number. The default radix is 10 (decimal), but the .RADIXdirective can be used to specify an alternate radix.
Integer-Literal:
Binary-Integer-Literal
Octal-Integer-Literal
Decimal-Integer-Literal
Hexadecimal-Integer-Literal
Description
An integer literalrepresents a fixed-point numeric value. An integer literal must begin with one of the numeric digits 0 - 9, and may be optionally terminated with a suffix character called a radix specifier. The radix specifier tells the assembler whether the literal is to be interpreted as a base 2 (binary), 8 (octal), 10 (decimal), or 16 ( hexadecimal) number. If the literal is not suffixed with a radix specifier , the assembler uses the value of the current radix to determine the base of the number. The default radix is 10 (decimal), but the .RADIXdirective can be used to specify an alternate radix.
Syntax
Integer-Literal:
Binary-Integer-Literal
Octal-Integer-Literal
Decimal-Integer-Literal
Hexadecimal-Integer-Literal
Binary Integer Literals
A base-2 number containing either of the digits 0and 1.
Binary-Integer-Literal:
Unqualified-Binary-Integer-Literal
Qualified-Binary-Integer-Literal
Unqualified-Binary-Integer-Literal:
Binary-Digit
Binary-Integer-Literal Binary-Digit
Qualified-Binary-Integer-Literal:
Unqualified-Binary-Integer-Literal Binary-Radix
Binary-Digit:
0
1
Binary-Radix:
b
B
y
Y
Related Information
Syntax
Binary-Integer-Literal:
Unqualified-Binary-Integer-Literal
Qualified-Binary-Integer-Literal
Unqualified-Binary-Integer-Literal:
Binary-Digit
Binary-Integer-Literal Binary-Digit
Qualified-Binary-Integer-Literal:
Unqualified-Binary-Integer-Literal Binary-Radix
Binary-Digit:
0
1
Binary-Radix:
b
B
y
Y
Description
A base-2 number containing either of the digits 0and 1.
Examples
The following are examples of unqualified binary integer literals:
10101
0
000001
1111000010101010
The following are examples of qualified binary integer literals:
00001111b
1111Y
00y
1111000010101010B
Octal Integer Literals
A base-8 number containing any of the digits 0through 7.
Octal-Integer-Literal:
Unqualified-Octal-Integer-Literal
Qualified-Octal-Integer-Literal
Unqualified-Octal-Integer-Literal:
Octal-Digit
Octal-Integer-Literal Octal-Digit
Qualified-Octal-Integer-Literal:
Unqualified-Octal-Integer-Literal Octal-Radix
Octal-Digit:one of:
0 1 2 3 4 5 6 7
Octal-Radix:
o
O
q
Q
Related Information
Syntax
Octal-Integer-Literal:
Unqualified-Octal-Integer-Literal
Qualified-Octal-Integer-Literal
Unqualified-Octal-Integer-Literal:
Octal-Digit
Octal-Integer-Literal Octal-Digit
Qualified-Octal-Integer-Literal:
Unqualified-Octal-Integer-Literal Octal-Radix
Octal-Digit:one of:
0 1 2 3 4 5 6 7
Octal-Radix:
o
O
q
Q
Description
A base-8 number containing any of the digits 0through 7.
Examples
The following are examples of unqualified octal integer literals:
01234567
27
765
The following are examples of qualified octal integer literals:
27q
013o
567O
01234567Q
Decimal Integer Literals
A base-10 number containing any of the digits 0through 9.
Decimal-Integer-Literal:
Unqualified-Decimal-Integer-Literal
Qualified-Decimal-Integer-Literal
Unqualified-Decimal-Integer-Literal:
Decimal-Digit
Decimal-Integer-Literal Decimal-Digit
Qualified-Decimal-Integer-Literal:
Unqualified-Decimal-Integer-Literal Decimal-Radix
Decimal-Digit:one of:
0 1 2 3 4 5 6 7 8 9
Decimal-Radix:
d
D
t
T
Related Information
Syntax
Decimal-Integer-Literal:
Unqualified-Decimal-Integer-Literal
Qualified-Decimal-Integer-Literal
Unqualified-Decimal-Integer-Literal:
Decimal-Digit
Decimal-Integer-Literal Decimal-Digit
Qualified-Decimal-Integer-Literal:
Unqualified-Decimal-Integer-Literal Decimal-Radix
Decimal-Digit:one of:
0 1 2 3 4 5 6 7 8 9
Decimal-Radix:
d
D
t
T
Description
A base-10 number containing any of the digits 0through 9.
Examples
The following are examples of unqualified decimal integer literals:
0123456789
19
090
The following are examples of qualified decimal integer literals:
01d
89t
4567D
0123456789T
Hexadecimal Integer Literals
A base-16 number using any combination of the digits 0through 9and the lowercase letters athrough for the uppercase letters Athrough F. The lowercase and uppercase representations of any given hexadecimal letter are equivalent.
Hexadecimal-Integer-Literal:
Unqualified-Hexadecimal-Integer-Literal
Qualified-Hexadecimal-Integer-Literal
Unqualified-Hexadecimal-Integer-Literal:
Decimal-Digit
Hexadecimal-Integer-Literal Decimal-Digit
Hexadecimal-Integer-Literal Hexadecimal-Digit
Qualified-Hexadecimal-Integer-Literal:
Unqualified-Hexadecimal-Integer-Literal Hexadecimal-Radix
Decimal-Digit:one of:
0 1 2 3 4 5 6 7 8 9
Hexadecimal-Digit:one of:
a b c d e f
A B C D E F
Hexadecimal-Radix:
h
H
Related Information
Syntax
Hexadecimal-Integer-Literal:
Unqualified-Hexadecimal-Integer-Literal
Qualified-Hexadecimal-Integer-Literal
Unqualified-Hexadecimal-Integer-Literal:
Decimal-Digit
Hexadecimal-Integer-Literal Decimal-Digit
Hexadecimal-Integer-Literal Hexadecimal-Digit
Qualified-Hexadecimal-Integer-Literal:
Unqualified-Hexadecimal-Integer-Literal Hexadecimal-Radix
Decimal-Digit:one of:
0 1 2 3 4 5 6 7 8 9
Hexadecimal-Digit:one of:
a b c d e f
A B C D E F
Hexadecimal-Radix:
h
H
Description
A base-16 number using any combination of the digits 0through 9and the lowercase letters athrough for the uppercase letters Athrough F. The lowercase and uppercase representations of any given hexadecimal letter are equivalent.
Constraints
A hexadecimal integer literal may not begin with any of the alphabetic hexadecimal characters or it will be interpreted as an identifier; such numbers must be prefixed with the 0digit.
Examples
The following are examples of unqualified hexadecimal integer literals:
01BD
9A
0AB
The following are examples of qualified hexadecimal integer literals:
1234ABCDh
01DH
0bh
1111FFFFH
Floating-Point Literals
A floating-point literalis a notation for representing real numbers. The assembler provides both decimal and hexadecimal floating-point notations for representing real numbers.
Floating-Point-Literal:
Decimal-Floating-Point-Literal
Hexadecimal-Floating-Point-Literal
Description
A floating-point literalis a notation for representing real numbers. The assembler provides both decimal and hexadecimal floating-point notations for representing real numbers.
Syntax
Floating-Point-Literal:
Decimal-Floating-Point-Literal
Hexadecimal-Floating-Point-Literal
Decimal Floating-Point Literals
A decimal floating-point literal has a significand partthat may be followed by an exponent part. The significand part consists of a digit sequence representing the whole-number part, followed by a period (.), followed by a digit sequence representing the fraction part. The exponent part consists of an introductory character (eor E), followed by an optional sign character (+or -), followed by a digit sequence representing the exponent.
Decimal-Floating-Point-Literal:
Significand-Part
Significand-Part Exponent-Part
Significand-Part:
Digit-Sequence.Digit-Sequence
Digit-Sequence.
Exponent-Part:
E-Character Digit-Sequence
E-Character Sign Digit-Sequence
E-Character:
e
E
Sign:
-
+
Digit-Sequence:
Digit
Digit-Sequence Digit
Digit:one of:
0 1 2 3 4 5 6 7 8 9
Related Information
Syntax
Decimal-Floating-Point-Literal:
Significand-Part
Significand-Part Exponent-Part
Significand-Part:
Digit-Sequence.Digit-Sequence
Digit-Sequence.
Exponent-Part:
E-Character Digit-Sequence
E-Character Sign Digit-Sequence
E-Character:
e
E
Sign:
-
+
Digit-Sequence:
Digit
Digit-Sequence Digit
Digit:one of:
0 1 2 3 4 5 6 7 8 9
Description
A decimal floating-point literal has a significand partthat may be followed by an exponent part. The significand part consists of a digit sequence representing the whole-number part, followed by a period (.), followed by a digit sequence representing the fraction part. The exponent part consists of an introductory character (eor E), followed by an optional sign character (+or -), followed by a digit sequence representing the exponent.
Constraints
The introductory Digit-Sequencein the Significand-Partmust be specified ( the literal cannot begin with a ".").
Examples
25 . 23 2 . 523E1 2523 . 0E - 2
Hexadecimal Floating-Point Literals
A hexadecimal floating-point literal provides a means of initializing floating point values using a notation more closely tied to the internal machine representation than that of the Decimal-Floating-Point-Literal. Such literals are coded in a fashion similar to that of a normal Hexadecimal-Integer-Literal, but a different radix suffix is used to inform the assembler that the value is to be used in the allocation of real numbers rather than integers.
Hexadecimal-Floating-Point-Literal:
Hexadecimal-Literal Float-Radix
Hexadecimal-Literal:
Decimal-Digit
Hexadecimal-Literal Decimal-Digit
Hexadecimal-Literal Hexadecimal-Digit
Decimal-Digit:one of:
0 1 2 3 4 5 6 7 8 9
Hexadecimal-Digit:one of:
a b c d e f
A B C D E F
Float-Radix:
r
R
Related Information
Syntax
Hexadecimal-Floating-Point-Literal:
Hexadecimal-Literal Float-Radix
Hexadecimal-Literal:
Decimal-Digit
Hexadecimal-Literal Decimal-Digit
Hexadecimal-Literal Hexadecimal-Digit
Decimal-Digit:one of:
0 1 2 3 4 5 6 7 8 9
Hexadecimal-Digit:one of:
a b c d e f
A B C D E F
Float-Radix:
r
R
Description
A hexadecimal floating-point literal provides a means of initializing floating point values using a notation more closely tied to the internal machine representation than that of the Decimal-Floating-Point-Literal. Such literals are coded in a fashion similar to that of a normal Hexadecimal-Integer-Literal, but a different radix suffix is used to inform the assembler that the value is to be used in the allocation of real numbers rather than integers.
Constraints
A hexadecimal floating-point literal may not begin with any of the alphabetic hexadecimal characters or it will be interpreted as an identifier; such numbers must be prefixed with the 0digit.
The literal must specify the correct number of hexadecimal digits according to the size of the real-number data-type to which it will be assigned. For REAL4, REAL8, and REAL10variables, the respective number of digits in the literal must be 8, 16, and 20. For literals encoded with a leading zero, the respective number of digits must be 9, 17, and 21.
Examples
3F800000r
String Literals
A string literalcontains a sequence of zero or more characters enclosed in quotation mark symbols. Either a single (') or double (") quotation mark symbol may be used as the quote characterthat opens and closes the string literal. If a single quotation mark symbol is used as the quote character, then double quotation mark symbols may appear as data characters within the string literal, and vice versa. If the quote character must also appear as a character within the string literal, use two adjacent quote characters; this will allow a single occurrence of the quote character to be inserted into the string literal.
A quote character must be used to terminate the string literal before the end of the line is reached, otherwise an error message is issued and the literal is terminated by the end of line character. A string literal may span multiple lines only if a backslash (\) appears as the last non- whitespace character on the line, in which case the backslash, all surrounding whitespace characters, and the end of line character are deleted and the literal is continued with the first character on the next line.
String-Literal:
D-String
S-String
D-String:
D-Quote D-Quote
D-Quote D-Char-Sequence D-Quote
S-String:
S-Quote S-Quote
S-Quote S-Char-Sequence S-Quote
D-Char-Sequence:
any printable character except D-Quote
D-Quote D-Quote
S-Char-Sequence:
any printable character except S-Quote
S-Quote S-Quote
D-Quote:
'"
S-Quote:
''
Related Information
Syntax
String-Literal:
D-String
S-String
D-String:
D-Quote D-Quote
D-Quote D-Char-Sequence D-Quote
S-String:
S-Quote S-Quote
S-Quote S-Char-Sequence S-Quote
D-Char-Sequence:
any printable character except D-Quote
D-Quote D-Quote
S-Char-Sequence:
any printable character except S-Quote
S-Quote S-Quote
D-Quote:
'"
S-Quote:
''
Description
A string literalcontains a sequence of zero or more characters enclosed in quotation mark symbols. Either a single (') or double (") quotation mark symbol may be used as the quote characterthat opens and closes the string literal. If a single quotation mark symbol is used as the quote character, then double quotation mark symbols may appear as data characters within the string literal, and vice versa. If the quote character must also appear as a character within the string literal, use two adjacent quote characters; this will allow a single occurrence of the quote character to be inserted into the string literal.
A quote character must be used to terminate the string literal before the end of the line is reached, otherwise an error message is issued and the literal is terminated by the end of line character. A string literal may span multiple lines only if a backslash (\) appears as the last non- whitespace character on the line, in which case the backslash, all surrounding whitespace characters, and the end of line character are deleted and the literal is continued with the first character on the next line.
Examples
'Hello, world' "That's the way it is" 'Unless it''s not' "SuperStringCon \ catenated"
Punctuators
Punctuators are used as operators and separator characters.
Punctuator:one of
[ ] ( ) { } * , : = ; %
Description
Punctuators are used as operators and separator characters.
Syntax
Punctuator:one of
[ ] ( ) { } * , : = ; %
Declarations
A Type Declarationis a language construct that specifies the characteristics of code and data objects used in a program.
Type Declarations
A Type-Declarationis a common construct used in various assembler directives to establish type attribute information for a program object. A Type-Declarationis needed to determine the data type of a variable or labeled address. The TYPEDEFdirective offers a method of assigning a name to a Type-Declaration.
Type-Declaration:
TypeName
TypeName Array-Spec
Pointer-Spec
Pointer-Spec TypeName
Pointer-Spec TypeName Array-Spec
Pointer-Spec:
PTR
Distance-TypeNamePTR
Pointer-Spec Array-Spec
Array-Spec:
[Expression]
Array-Spec[Expression]
TypeName:
Distance-TypeName
Scalar-TypeName
UserDefined-TypeName
The TYPEDEFdirective is used to illustrate the type declaration syntax:
CHAR typedef byte ; Alias of intrinsic TypeName PBYTE typedef ptr byte ; Pointer to intrinsic TypeName PCHAR typedef ptr CHAR ; Pointer to TypeDef - TypeName PPCHAR typedef ptr PCHAR ; Pointer to a pointer to a CHAR PPBYTE typedef ptr ptr byte ; Similar to PPCHAR PVOID typedef ptr ; Pointer to nothing ( pointer to code ) PCODE typedef ptr PROC ; Similar to PVOID PFCODE typedef far ptr far ; Far pointer to far code address ; vector declarations ACHAR typedef CHAR [ 16 ] ; Array of 16 characters AAWORD typedef word [ 2 ] [ 2 ] ; multi - dimensional array APBYTE typedef ptr [ 8 ] byte ; Array of 8 pointers to byte APACHAR typedef ptr [ 4 ] ACHAR ; Array of 4 ptrs to arrays of 16 chars SIZES _ T struct ; define an intrinsic structure type little byte ? Medium word ? BIG dword ? SIZES _ T ends SIZES typedef SIZES _ T ; alias for intrinsic structure type PSIZES typedef ptr SIZES _ T ; and a type to point to it PFORWARD typedef ptr FORWARD ; Pointers to forward - referenced types FORWARD struct ; are assumed to be pointers to structs blah word ? FORWARD ends
Description
A Type-Declarationis a common construct used in various assembler directives to establish type attribute information for a program object. A Type-Declarationis needed to determine the data type of a variable or labeled address. The TYPEDEFdirective offers a method of assigning a name to a Type-Declaration.
Syntax
Type-Declaration:
TypeName
TypeName Array-Spec
Pointer-Spec
Pointer-Spec TypeName
Pointer-Spec TypeName Array-Spec
Pointer-Spec:
PTR
Distance-TypeNamePTR
Pointer-Spec Array-Spec
Array-Spec:
[Expression]
Array-Spec[Expression]
TypeName:
Distance-TypeName
Scalar-TypeName
UserDefined-TypeName
Examples
The TYPEDEFdirective is used to illustrate the type declaration syntax:
CHAR typedef byte ; Alias of intrinsic TypeName PBYTE typedef ptr byte ; Pointer to intrinsic TypeName PCHAR typedef ptr CHAR ; Pointer to TypeDef - TypeName PPCHAR typedef ptr PCHAR ; Pointer to a pointer to a CHAR PPBYTE typedef ptr ptr byte ; Similar to PPCHAR PVOID typedef ptr ; Pointer to nothing ( pointer to code ) PCODE typedef ptr PROC ; Similar to PVOID PFCODE typedef far ptr far ; Far pointer to far code address ; vector declarations ACHAR typedef CHAR [ 16 ] ; Array of 16 characters AAWORD typedef word [ 2 ] [ 2 ] ; multi - dimensional array APBYTE typedef ptr [ 8 ] byte ; Array of 8 pointers to byte APACHAR typedef ptr [ 4 ] ACHAR ; Array of 4 ptrs to arrays of 16 chars SIZES _ T struct ; define an intrinsic structure type little byte ? Medium word ? BIG dword ? SIZES _ T ends SIZES typedef SIZES _ T ; alias for intrinsic structure type PSIZES typedef ptr SIZES _ T ; and a type to point to it PFORWARD typedef ptr FORWARD ; Pointers to forward - referenced types FORWARD struct ; are assumed to be pointers to structs blah word ? FORWARD ends
Expressions
An expression is a sequence of operatorsand operandsthat are evaluated to derive a numeric result, an effective address, or a register operand.
Expressions are specified using standard infix notation, which is recursive in nature, ie., expressions may be nested within other expressions. The evaluation of an expression occurs in a left to right manner, and is influenced by the rules of operator precedenceand associativity. The order in which expressions are evaluated can be controlled by grouping operands and operators together using parentheses ().
Expression Syntax
This section describes the complete expression syntax.
Expression:
Duplicative-Expression
Duplicative-Expression:
Attribute-Expression
Attribute-ExpressionDUP(Initializer-List)
Attribute-Expression:
OR-Expression
SHORTAdditive-Expression
.TYPEOR-Expression
OPATTROR-Expression
OR-Expression:
AND-Expression
OR-ExpressionORAND-Expression
OR-ExpressionXORAND-Expression
AND-Expression:
NOT-Expression
AND-ExpressionANDNOT-Expression
NOT-Expression:
Relational-Expression
NOTRelational-Expression
Relational-Expression:
Additive-Expression
Relational-ExpressionEQAdditive-Expression
Relational-ExpressionNEAdditive-Expression
Relational-ExpressionGTAdditive-Expression
Relational-ExpressionGEAdditive-Expression
Relational-ExpressionLTAdditive-Expression
Relational-ExpressionLEAdditive-Expression
Additive-Expression:
Multiplicative-Expression
Additive-Expression+Multiplicative-Expression
Additive-Expression-Multiplicative-Expression
Multiplicative-Expression:
Narrowed-Expression
Multiplicative-Expression*Narrowed-Expression
Multiplicative-Expression/Narrowed-Expression
Multiplicative-ExpressionMODNarrowed-Expression
Multiplicative-ExpressionSHLNarrowed-Expression
Multiplicative-ExpressionSHRNarrowed-Expression
Narrowed-Expression:
Cast-Expression
HIGHCast-Expression
HIGHWORDCast-Expression
LOWCast-Expression
LOWWORDCast-Expression
Cast-Expression:
Element-Selection-Expression
OFFSETCast-Expression
SEGCast-Expression
THISElement-Selection-Expression
TYPEElement-Selection-Expression
Cast-ExpressionPTRCast-Expression
Cast-Expression:Cast-Expression
Element-Selection-Expression:
Sign-Expression
Element-Selection-Expression[Sign-Expression00476.htm]
Element-Selection-Expression.Sign-Expression
Sign-Expression:
Primary-Expression
-Primary-Expression
+Primary-Expression
Primary-Expression:
Literal-Operand
Record-Constant
Identifier-Operand
Register-Operand
Integral-TypeName-Operand
Value-Substitution-Operand
LENGTHIdentifier-Operand
LENGTHOFIdentifier-Operand
MASKIdentifier-Operand
SIZEElement-Selection-Expression
SIZEOFElement-Selection-Expression
WIDTHIdentifier-Operand
Parenthesized-Expression
Indirected-Expression
Compound-Initializer
Literal-Operand:
Floating-Point-Literal
Integer-Literal
String-Literal
Record-Constant:
Identifier-Operand<Field-List>
Identifier-Operand{Field-List}
Field-List:
Attribute-Expression
Field-List,Attribute-Expression
Identifier-Operand:
Identifier
Register-Operand:
Processor-Register
Integral-TypeName-Operand:
Scalar-TypeName
Distance-TypeName
Value-Substitution-Operand:
Anonymous-Label-Alias
Location-Counter-Alias
Indeterminate-Value-Alias
FLAT
Parenthesized-Expression:
(Attribute-Expression)
Indirected-Expression:
[Attribute-Expression]
Compound-Initializer:
<Initializer-List>
{Initializer-List}
Initializer-List:
Duplicative-Expression
Initializer-List,Duplicative-Expression
Description
This section describes the complete expression syntax.
Syntax
Expression:
Duplicative-Expression
Duplicative-Expression:
Attribute-Expression
Attribute-ExpressionDUP(Initializer-List)
Attribute-Expression:
OR-Expression
SHORTAdditive-Expression
.TYPEOR-Expression
OPATTROR-Expression
OR-Expression:
AND-Expression
OR-ExpressionORAND-Expression
OR-ExpressionXORAND-Expression
AND-Expression:
NOT-Expression
AND-ExpressionANDNOT-Expression
NOT-Expression:
Relational-Expression
NOTRelational-Expression
Relational-Expression:
Additive-Expression
Relational-ExpressionEQAdditive-Expression
Relational-ExpressionNEAdditive-Expression
Relational-ExpressionGTAdditive-Expression
Relational-ExpressionGEAdditive-Expression
Relational-ExpressionLTAdditive-Expression
Relational-ExpressionLEAdditive-Expression
Additive-Expression:
Multiplicative-Expression
Additive-Expression+Multiplicative-Expression
Additive-Expression-Multiplicative-Expression
Multiplicative-Expression:
Narrowed-Expression
Multiplicative-Expression*Narrowed-Expression
Multiplicative-Expression/Narrowed-Expression
Multiplicative-ExpressionMODNarrowed-Expression
Multiplicative-ExpressionSHLNarrowed-Expression
Multiplicative-ExpressionSHRNarrowed-Expression
Narrowed-Expression:
Cast-Expression
HIGHCast-Expression
HIGHWORDCast-Expression
LOWCast-Expression
LOWWORDCast-Expression
Cast-Expression:
Element-Selection-Expression
OFFSETCast-Expression
SEGCast-Expression
THISElement-Selection-Expression
TYPEElement-Selection-Expression
Cast-ExpressionPTRCast-Expression
Cast-Expression:Cast-Expression
Element-Selection-Expression:
Sign-Expression
Element-Selection-Expression[Sign-Expression00476.htm]
Element-Selection-Expression.Sign-Expression
Sign-Expression:
Primary-Expression
-Primary-Expression
+Primary-Expression
Primary-Expression:
Literal-Operand
Record-Constant
Identifier-Operand
Register-Operand
Integral-TypeName-Operand
Value-Substitution-Operand
LENGTHIdentifier-Operand
LENGTHOFIdentifier-Operand
MASKIdentifier-Operand
SIZEElement-Selection-Expression
SIZEOFElement-Selection-Expression
WIDTHIdentifier-Operand
Parenthesized-Expression
Indirected-Expression
Compound-Initializer
Literal-Operand:
Floating-Point-Literal
Integer-Literal
String-Literal
Record-Constant:
Identifier-Operand<Field-List>
Identifier-Operand{Field-List}
Field-List:
Attribute-Expression
Field-List,Attribute-Expression
Identifier-Operand:
Identifier
Register-Operand:
Processor-Register
Integral-TypeName-Operand:
Scalar-TypeName
Distance-TypeName
Value-Substitution-Operand:
Anonymous-Label-Alias
Location-Counter-Alias
Indeterminate-Value-Alias
FLAT
Parenthesized-Expression:
(Attribute-Expression)
Indirected-Expression:
[Attribute-Expression]
Compound-Initializer:
<Initializer-List>
{Initializer-List}
Initializer-List:
Duplicative-Expression
Initializer-List,Duplicative-Expression
Duplicative Initialization Expression
A Duplicative Initialization Expressionis one that can be optionally used during the initialization of variables such that the operand is duplicated a specified number of times.
Duplicative-Expression:
Attribute-Expression
Attribute-ExpressionDUP(Initializer-List)
Initializer-List:
Duplicative-Expression
Initializer-List,Duplicative-Expression
Description
A Duplicative Initialization Expressionis one that can be optionally used during the initialization of variables such that the operand is duplicated a specified number of times.
Syntax
Duplicative-Expression:
Attribute-Expression
Attribute-ExpressionDUP(Initializer-List)
Initializer-List:
Duplicative-Expression
Initializer-List,Duplicative-Expression
Duplicative Initialization (DUP Operator)
The DUPoperator creates a Duplicated-ExpressionTypefrom the Initializer- Listenclosed in parentheses. This construct can be used to create arrays of information during data allocation.
Attribute-ExpressionDUP (Initializer-List)
Initializer-List:
Duplicative-Expression
Initializer-List,Duplicative-Expression
Related Information
Syntax
Attribute-ExpressionDUP (Initializer-List)
Initializer-List:
Duplicative-Expression
Initializer-List,Duplicative-Expression
Description
The DUPoperator creates a Duplicated-ExpressionTypefrom the Initializer- Listenclosed in parentheses. This construct can be used to create arrays of information during data allocation.
Constraints
The left hand operand of the DUPoperator must evaluate to an Absolute- ExpressionType.
Each Duplicative-Expressionin the Initializer-Listmust evaluate to an Initializer-ExpressionType.
Examples
STR STRUCT One BYTE 0 Two BYTE 0 STR ENDS Array1 WORD 4 DUP ( 1 , 2 , 3 , 4 ) ; allocates 16 words Array2 STR 8 DUP ( < 1 , 2 > ) ; 8 structures
Attribute Expression
An Attribute Expressionis one that optionally extracts or modifies one or more of the basic properties of its operand.
Attribute-Expression:
OR-Expression
SHORTAdditive-Expression
.TYPEOR-Expression
OPATTROR-Expression
Description
An Attribute Expressionis one that optionally extracts or modifies one or more of the basic properties of its operand.
Syntax
Attribute-Expression:
OR-Expression
SHORTAdditive-Expression
.TYPEOR-Expression
OPATTROR-Expression
Expression Descriptor Bitmap (.TYPE Operator)
The .TYPEoperator is considered obsolete. The OPATTRoperator should be used instead.
The .TYPEoperator returns a byte value bitmap that describes various attributes of its operand. The return value is 0 if the expression could not be correctly parsed or evaluated, otherwise the bitmap returned is formatted according to the following table:
/------------------------------------------------------------------\ |7|6|5|4|3|2|1|0|BIT SET IF EXPRESSION | |-+-+-+-+-+-+-+-+--------------------------------------------------| | | | | | | | |1|Is a Direct-ExpressionType | |-+-+-+-+-+-+-+-+--------------------------------------------------| | | | | | | |1| |Is a Indirect-ExpressionType, an | | | | | | | | | |Indexed-ExpressionType, or a combination of both | |-+-+-+-+-+-+-+-+--------------------------------------------------| | | | | | |1| | |Is an Immediate-ExpressionType | |-+-+-+-+-+-+-+-+--------------------------------------------------| | | | | |1| | | |Is an Indirect-ExpressionType | |-+-+-+-+-+-+-+-+--------------------------------------------------| | | | |1| | | | |Is a Register-ExpressionType | |-+-+-+-+-+-+-+-+--------------------------------------------------| | | |1| | | | | |Was parsed and evaluated without error (no | | | | | | | | | |undefined symbols, etc.) | |-+-+-+-+-+-+-+-+--------------------------------------------------| | |1| | | | | | |Is relative to the SS Segment-Register | |-+-+-+-+-+-+-+-+--------------------------------------------------| |1| | | | | | | |Contains an External Reference | \------------------------------------------------------------------/
.TYPEOR-Expression
Related Information
Syntax
.TYPEOR-Expression
Description
The .TYPEoperator is considered obsolete. The OPATTRoperator should be used instead.
The .TYPEoperator returns a byte value bitmap that describes various attributes of its operand. The return value is 0 if the expression could not be correctly parsed or evaluated, otherwise the bitmap returned is formatted according to the following table:
/------------------------------------------------------------------\ |7|6|5|4|3|2|1|0|BIT SET IF EXPRESSION | |-+-+-+-+-+-+-+-+--------------------------------------------------| | | | | | | | |1|Is a Direct-ExpressionType | |-+-+-+-+-+-+-+-+--------------------------------------------------| | | | | | | |1| |Is a Indirect-ExpressionType, an | | | | | | | | | |Indexed-ExpressionType, or a combination of both | |-+-+-+-+-+-+-+-+--------------------------------------------------| | | | | | |1| | |Is an Immediate-ExpressionType | |-+-+-+-+-+-+-+-+--------------------------------------------------| | | | | |1| | | |Is an Indirect-ExpressionType | |-+-+-+-+-+-+-+-+--------------------------------------------------| | | | |1| | | | |Is a Register-ExpressionType | |-+-+-+-+-+-+-+-+--------------------------------------------------| | | |1| | | | | |Was parsed and evaluated without error (no | | | | | | | | | |undefined symbols, etc.) | |-+-+-+-+-+-+-+-+--------------------------------------------------| | |1| | | | | | |Is relative to the SS Segment-Register | |-+-+-+-+-+-+-+-+--------------------------------------------------| |1| | | | | | | |Contains an External Reference | \------------------------------------------------------------------/
Examples
BumpCounter macro bump if ( ( ( . TYPE ( bump ) ) and 07h ) eq 04h ) Counter = Counter + bump else . err < Non - constant value passed to BumpCounter > endif endm
Extended Descriptor Bitmap (OPATTR Operator)
The OPATTRoperator returns a superset of the information returned by the . TYPEoperator, which should be considered obsolete.
The OPATTRoperator returns a word value bitmap that describes various attributes of its operand. The return value is 0 if the expression could not be correctly parsed or evaluated, otherwise the bitmap returned is formatted according to the following table:
/----------------------------------------------------------------------\ |A98|7|6|5|4|3|2|1|0|BIT SET IF EXPRESSION | |---+-+-+-+-+-+-+-+-+--------------------------------------------------| | | | | | | | | |1|Is a Direct-ExpressionType | |---+-+-+-+-+-+-+-+-+--------------------------------------------------| | | | | | | | |1| |Is a Indirect-ExpressionType, an | | | | | | | | | | |Indexed-ExpressionType, or a combination of both | |---+-+-+-+-+-+-+-+-+--------------------------------------------------| | | | | | | |1| | |Is an Immediate-ExpressionType | |---+-+-+-+-+-+-+-+-+--------------------------------------------------| | | | | | |1| | | |Is an Indirect-ExpressionType | |---+-+-+-+-+-+-+-+-+--------------------------------------------------| | | | | |1| | | | |Is a Register-ExpressionType | |---+-+-+-+-+-+-+-+-+--------------------------------------------------| | | | |1| | | | | |Was parsed and evaluated without error (no | | | | | | | | | | |undefined symbols, etc.) | |---+-+-+-+-+-+-+-+-+--------------------------------------------------| | | |1| | | | | | |Is relative to the SS Segment-Register | |---+-+-+-+-+-+-+-+-+--------------------------------------------------| | |1| | | | | | | |Contains an External Reference | |---+-+-+-+-+-+-+-+-+--------------------------------------------------| |LLL| | | | | | | | |Language encoding (described below) | \----------------------------------------------------------------------/
The LLLfield (bits 8, 9, and A) comprise an enumerated value that describes the language attribute assigned to the expression as follows:
000No language attribute used in expression
001C
010SYSCALL
011STDCALL
100PASCAL
101FORTRAN
110BASIC
111OPTLINK
OPATTROR-Expression
Related Information
Syntax
OPATTROR-Expression
Description
The OPATTRoperator returns a superset of the information returned by the . TYPEoperator, which should be considered obsolete.
The OPATTRoperator returns a word value bitmap that describes various attributes of its operand. The return value is 0 if the expression could not be correctly parsed or evaluated, otherwise the bitmap returned is formatted according to the following table:
/----------------------------------------------------------------------\ |A98|7|6|5|4|3|2|1|0|BIT SET IF EXPRESSION | |---+-+-+-+-+-+-+-+-+--------------------------------------------------| | | | | | | | | |1|Is a Direct-ExpressionType | |---+-+-+-+-+-+-+-+-+--------------------------------------------------| | | | | | | | |1| |Is a Indirect-ExpressionType, an | | | | | | | | | | |Indexed-ExpressionType, or a combination of both | |---+-+-+-+-+-+-+-+-+--------------------------------------------------| | | | | | | |1| | |Is an Immediate-ExpressionType | |---+-+-+-+-+-+-+-+-+--------------------------------------------------| | | | | | |1| | | |Is an Indirect-ExpressionType | |---+-+-+-+-+-+-+-+-+--------------------------------------------------| | | | | |1| | | | |Is a Register-ExpressionType | |---+-+-+-+-+-+-+-+-+--------------------------------------------------| | | | |1| | | | | |Was parsed and evaluated without error (no | | | | | | | | | | |undefined symbols, etc.) | |---+-+-+-+-+-+-+-+-+--------------------------------------------------| | | |1| | | | | | |Is relative to the SS Segment-Register | |---+-+-+-+-+-+-+-+-+--------------------------------------------------| | |1| | | | | | | |Contains an External Reference | |---+-+-+-+-+-+-+-+-+--------------------------------------------------| |LLL| | | | | | | | |Language encoding (described below) | \----------------------------------------------------------------------/
The LLLfield (bits 8, 9, and A) comprise an enumerated value that describes the language attribute assigned to the expression as follows:
000No language attribute used in expression
001C
010SYSCALL
011STDCALL
100PASCAL
101FORTRAN
110BASIC
111OPTLINK
Constraints
This operator is not available in M510mode.
Examples
L _ MASK equ 011100000000y ; mask to isolate language bits L _ OPTLINK equ 011100000000y ; setting for OptLink calling convention VerifyCallBack macro ProcName if ( ( ( OPATTR ( ProcName ) ) and L _ MASK ) ne L _ OPTLINK ) . err < Call - back routine must have OptLink linkage > endif endm
Force Short Relative Address (SHORT Operator)
The SHORToperator forces the assembler to calculate the distance from the start of the next instruction to the target specified by the operand (given by Additive-Expression) to be less than 128 bytes away. This can cause the assembler to generate more efficient control transfer instructions when the target is a forward reference. By default, the assembler assumes that the code-relative target is of NEARdistance when the target is an unqualified forward reference.
SHORTAdditive-Expression
Related Information
Syntax
SHORTAdditive-Expression
Description
The SHORToperator forces the assembler to calculate the distance from the start of the next instruction to the target specified by the operand (given by Additive-Expression) to be less than 128 bytes away. This can cause the assembler to generate more efficient control transfer instructions when the target is a forward reference. By default, the assembler assumes that the code-relative target is of NEARdistance when the target is an unqualified forward reference.
Constraints
The Additive-Expressionmust evaluate to a Direct-ExpressionType.
Examples
JMP Forward ; target unknown , NEAR jump generated JMP SHORT Forward ; force SHORT encoding . . ; fewer than 128 bytes of instructions . Forward : ; definition of target
Bitwise OR Expression
A Bitwise OR Expressionis one where an optional binary bitwise ORoperation between the left and right operands is performed and the result returned.
OR-Expression:
AND-Expression
OR-ExpressionORAND-Expression
OR-ExpressionXORAND-Expression
Description
A Bitwise OR Expressionis one where an optional binary bitwise ORoperation between the left and right operands is performed and the result returned.
Syntax
OR-Expression:
AND-Expression
OR-ExpressionORAND-Expression
OR-ExpressionXORAND-Expression
Bitwise Inclusive OR (OR Operator)
The ORoperator performs a binary bitwise OR operation on the left and right hand operands.
Related Information
Syntax
Description
The ORoperator performs a binary bitwise OR operation on the left and right hand operands.
Constraints
Each operand must evaluate to a Constant-ExpressionType.
Examples
One EQU 1 Two EQU 2 MOV AX , One OR Two ; moves 3 into AX
Bitwise Exclusive OR (XOR Operator)
The XORoperator performs a binary bitwise XOR operation on the left and right hand operands.
OR-ExpressionXORAND-Expression
Related Information
Syntax
OR-ExpressionXORAND-Expression
Description
The XORoperator performs a binary bitwise XOR operation on the left and right hand operands.
Constraints
Each operand must evaluate to a Constant-ExpressionType.
Examples
Lower EQU 0101y ; 7h - binary radix suffix Upper EQU 1100y ; Eh - binary radix suffix MOV AX , Upper XOR Lower ; moves 1001 into AX
Bitwise AND Expression
A Bitwise AND Expressionis one where an optional binary bitwise ANDoperation between the left and right operands is performed and the result returned.
AND-Expression:
NOT-Expression
AND-ExpressionANDNOT-Expression
Description
A Bitwise AND Expressionis one where an optional binary bitwise ANDoperation between the left and right operands is performed and the result returned.
Syntax
AND-Expression:
NOT-Expression
AND-ExpressionANDNOT-Expression
Bitwise AND (AND Operator)
The ANDoperator performs a binary bitwise AND operation on the left and right hand operands.
AND-ExpressionANDNOT-Expression
Related Information
Syntax
AND-ExpressionANDNOT-Expression
Description
The ANDoperator performs a binary bitwise AND operation on the left and right hand operands.
Constraints
Each operand must evaluate to a Constant-ExpressionType.
Examples
Lower EQU 0111y ; 7h - binary radix suffix Upper EQU 1110y ; Eh - binary radix suffix MOV AX , Upper XOR Lower ; moves 0110 into AX
Bitwise One's Complement Expression
A Bitwise One's Complement Expressionis one that performs an optional unary bitwise negation of its operand and returns the result.
NOT-Expression:
Relational-Expression
NOTRelational-Expression
Description
A Bitwise One's Complement Expressionis one that performs an optional unary bitwise negation of its operand and returns the result.
Syntax
NOT-Expression:
Relational-Expression
NOTRelational-Expression
Bitwise One's Complement (NOT Operator)
The NOToperator performs a unary bitwise negation on its operand.
Related Information
Syntax
Description
The NOToperator performs a unary bitwise negation on its operand.
Constraints
The operand must evaluate to a Constant-ExpressionType.
Examples
Value EQU 0111y ; 7h - binary radix suffix MOV EAX , NOT Value ; moves FFFFFFF8 into EAX
Relational Expression
A Relational Expressionis one where an optional binary comparision operation between the left and right operands is performed and the result returned.
Relational-Expression:
Additive-Expression
Relational-ExpressionEQAdditive-Expression
Relational-ExpressionNEAdditive-Expression
Relational-ExpressionGTAdditive-Expression
Relational-ExpressionGEAdditive-Expression
Relational-ExpressionLTAdditive-Expression
Relational-ExpressionLEAdditive-Expression
Description
A Relational Expressionis one where an optional binary comparision operation between the left and right operands is performed and the result returned.
Syntax
Relational-Expression:
Additive-Expression
Relational-ExpressionEQAdditive-Expression
Relational-ExpressionNEAdditive-Expression
Relational-ExpressionGTAdditive-Expression
Relational-ExpressionGEAdditive-Expression
Relational-ExpressionLTAdditive-Expression
Relational-ExpressionLEAdditive-Expression
Equal To (EQ Operator)
The EQoperator performs a binary logical comparision on the left and right hand operands. It returns true (all bits on) if they are equal, and false (all bits off) if they are not equal.
Relational-ExpressionEQAdditive-Expression
Related Information
Syntax
Relational-ExpressionEQAdditive-Expression
Description
The EQoperator performs a binary logical comparision on the left and right hand operands. It returns true (all bits on) if they are equal, and false (all bits off) if they are not equal.
Constraints
Each operand must evaluate to a Constant-ExpressionType.
Examples
IF 1234 EQ 5678 TRUE = 1 ELSE TRUE = 0 ; Sets TRUE to 0 ENDIF
Not Equal To (NE Operator)
The NEoperator performs a binary logical comparision on the left and right hand operands. It returns true (all bits on) if they are not equal, and false (all bits off) if they are equal.
Relational-ExpressionNEAdditive-Expression
Related Information
Syntax
Relational-ExpressionNEAdditive-Expression
Description
The NEoperator performs a binary logical comparision on the left and right hand operands. It returns true (all bits on) if they are not equal, and false (all bits off) if they are equal.
Constraints
Each operand must evaluate to a Constant-ExpressionType.
Examples
IF 1234 NE 5678 TRUE = 1 ; Sets TRUE to 1 ELSE TRUE = 0 ENDIF
Greater Than (GT Operator)
The GToperator performs a binary logical comparision on the left and right hand operands. It returns true (all bits on) if the left operand is greater than the right operand, and false (all bits off) if it is not.
Relational-ExpressionGTAdditive-Expression
Related Information
Syntax
Relational-ExpressionGTAdditive-Expression
Description
The GToperator performs a binary logical comparision on the left and right hand operands. It returns true (all bits on) if the left operand is greater than the right operand, and false (all bits off) if it is not.
Constraints
Each operand must evaluate to a Constant-ExpressionType.
Examples
IF 1234 GT 5678 TRUE = 1 ELSE TRUE = 0 ; Sets TRUE to 0 ENDIF
Greater Than or Equal To (GE Operator)
The GEoperator performs a binary logical comparision on the left and right hand operands. It returns true (all bits on) if the left operand is greater than or equal to the right operand, and false (all bits off) if it is not.
Relational-ExpressionGEAdditive-Expression
Related Information
Syntax
Relational-ExpressionGEAdditive-Expression
Description
The GEoperator performs a binary logical comparision on the left and right hand operands. It returns true (all bits on) if the left operand is greater than or equal to the right operand, and false (all bits off) if it is not.
Constraints
Each operand must evaluate to a Constant-ExpressionType.
Examples
IF 1234 GE 1234 TRUE = 1 ; Sets TRUE to 1 ELSE TRUE = 0 ENDIF
Less Than (LT Operator)
The LToperator performs a binary logical comparision on the left and right hand operands. It returns true (all bits on) if the left operand is less than the right operand, and false (all bits off) if it is not.
Relational-ExpressionLTAdditive-Expression
Related Information
Syntax
Relational-ExpressionLTAdditive-Expression
Description
The LToperator performs a binary logical comparision on the left and right hand operands. It returns true (all bits on) if the left operand is less than the right operand, and false (all bits off) if it is not.
Constraints
Each operand must evaluate to a Constant-ExpressionType.
Examples
IF 1234 LT 5678 TRUE = 1 ; Sets TRUE to 1 ELSE TRUE = 0 ENDIF
Less Than or Equal To (LE Operator)
The LEoperator performs a binary logical comparision on the left and right hand operands. It returns true (all bits on) if the left operand is less than or equal to the right operand, and false (all bits off) if it is not.
Relational-ExpressionLEAdditive-Expression
Related Information
Syntax
Relational-ExpressionLEAdditive-Expression
Description
The LEoperator performs a binary logical comparision on the left and right hand operands. It returns true (all bits on) if the left operand is less than or equal to the right operand, and false (all bits off) if it is not.
Constraints
Each operand must evaluate to a Constant-ExpressionType.
Examples
IF 1234 LE 1234 TRUE = 1 ; Sets TRUE to 1 ELSE TRUE = 0 ENDIF
Additive Expression
A Additive Expressionis one where an optional binary additive arithmetic operation between the left and right operands is performed and the result returned.
Additive-Expression:
Multiplicative-Expression
Additive-Expression+Multiplicative-Expression
Additive-Expression-Multiplicative-Expression
Description
A Additive Expressionis one where an optional binary additive arithmetic operation between the left and right operands is performed and the result returned.
Syntax
Additive-Expression:
Multiplicative-Expression
Additive-Expression+Multiplicative-Expression
Additive-Expression-Multiplicative-Expression
Addition (+ Operator)
The +operator performs a binary addition operation on the left and right hand operands, and returns the result.
Additive-Expression+Multiplicative-Expression
Related Information
Syntax
Additive-Expression+Multiplicative-Expression
Description
The +operator performs a binary addition operation on the left and right hand operands, and returns the result.
Constraints
One of the operands must evaluate to a Constant-ExpressionType. If one of the operands references an external identifier, then the other operand must be a Constant-ExpressionTypewithout an external reference. Both operands must be of scalar type.
Examples
VALUE = 100 + 11 ; sets VALUE to 111
Subtraction (- Operator)
The -operator performs a binary subtraction operation on the left and right hand operands, and returns the result.
Additive-Expression-Multiplicative-Expression
Related Information
Syntax
Additive-Expression-Multiplicative-Expression
Description
The -operator performs a binary subtraction operation on the left and right hand operands, and returns the result.
Constraints
The right operand must evaluate to a Constant-ExpressionTypeand reference no external identifiers. If both operands are relocatable, they must reside within the same segment, in which case the result is converted to a Absolute-ExpressionType. Both operands must be of scalar type.
Examples
VALUE = 111 - 11 ; sets VALUE to 100
Multiplicative Expression
A Multiplicative Expressionis one where an optional binary multiplicative arithmetic operation between the left and right operands is performed and the result returned.
Multiplicative-Expression:
Narrowed-Expression
Multiplicative-Expression*Narrowed-Expression
Multiplicative-Expression/Narrowed-Expression
Multiplicative-ExpressionMODNarrowed-Expression
Multiplicative-ExpressionSHLNarrowed-Expression
Multiplicative-ExpressionSHRNarrowed-Expression
Description
A Multiplicative Expressionis one where an optional binary multiplicative arithmetic operation between the left and right operands is performed and the result returned.
Syntax
Multiplicative-Expression:
Narrowed-Expression
Multiplicative-Expression*Narrowed-Expression
Multiplicative-Expression/Narrowed-Expression
Multiplicative-ExpressionMODNarrowed-Expression
Multiplicative-ExpressionSHLNarrowed-Expression
Multiplicative-ExpressionSHRNarrowed-Expression
Multiplication (* Operator)
The *operator performs a binary multiplication operation on the left and right hand operands, and returns the result.
Multiplicative-Expression*Narrowed-Expression
Related Information
Syntax
Multiplicative-Expression*Narrowed-Expression
Description
The *operator performs a binary multiplication operation on the left and right hand operands, and returns the result.
Constraints
Each operand must evaluate to a Constant-ExpressionType.
Examples
VALUE = 9 * 3 ; sets VALUE to 27
Division (/ Operator)
The /operator performs a binary division operation on the left and right hand operands, and returns the result.
Multiplicative-Expression/Narrowed-Expression
Related Information
Syntax
Multiplicative-Expression/Narrowed-Expression
Description
The /operator performs a binary division operation on the left and right hand operands, and returns the result.
Constraints
Each operand must evaluate to a Constant-ExpressionType.
Examples
VALUE = 27 / 9 ; sets VALUE to 3
Remainder (MOD Operator)
The MODoperator performs a binary modulus division operation on the left and right hand operands, and returns the remainder as the result.
Multiplicative-ExpressionMODNarrowed-Expression
Related Information
Syntax
Multiplicative-ExpressionMODNarrowed-Expression
Description
The MODoperator performs a binary modulus division operation on the left and right hand operands, and returns the remainder as the result.
Constraints
Each operand must evaluate to a Constant-ExpressionType.
Examples
VALUE = 18 MOD 4 ; sets VALUE to 2
Bitwise Left Shift (SHL Operator)
The SHLoperator shifts the bits in the left hand operand to the left by the number of bits specified in the right hand operand, and returns the result.
Multiplicative-ExpressionSHLNarrowed-Expression
Related Information
Syntax
Multiplicative-ExpressionSHLNarrowed-Expression
Description
The SHLoperator shifts the bits in the left hand operand to the left by the number of bits specified in the right hand operand, and returns the result.
Constraints
Each operand must evaluate to a Constant-ExpressionType.
Examples
VALUE = 1111y SHL 4 ; sets VALUE to 11110000y
Bitwise Right Shift (SHR Operator)
The SHRoperator shifts the bits in the left hand operand to the right by the number of bits specified in the right hand operand, and returns the result.
Multiplicative-ExpressionSHRNarrowed-Expression
Related Information
Syntax
Multiplicative-ExpressionSHRNarrowed-Expression
Description
The SHRoperator shifts the bits in the left hand operand to the right by the number of bits specified in the right hand operand, and returns the result.
Constraints
Each operand must evaluate to a Constant-ExpressionType.
Examples
VALUE = 11110000y SHR 4 ; sets VALUE to 00001111y
Narrowed Expression
A Narrowed Expressionis one that performs an optional unary narrowing operation on its operand and returns the result.
Narrowed-Expression:
Cast-Expression
HIGHCast-Expression
HIGHWORDCast-Expression
LOWCast-Expression
LOWWORDCast-Expression
Description
A Narrowed Expressionis one that performs an optional unary narrowing operation on its operand and returns the result.
Syntax
Narrowed-Expression:
Cast-Expression
HIGHCast-Expression
HIGHWORDCast-Expression
LOWCast-Expression
LOWWORDCast-Expression
Upper 8 Bits of WORD Expression (HIGH Operator)
The HIGHoperator returns the upper 8 bits of a 16-bit expression. Only bits 8-15 are returned, even if the magnitude of the operand exceeds 16 bits.
HIGHCast-Expression
Related Information
Syntax
HIGHCast-Expression
Description
The HIGHoperator returns the upper 8 bits of a 16-bit expression. Only bits 8-15 are returned, even if the magnitude of the operand exceeds 16 bits.
Constraints
The operand must evaluate to a Constant-ExpressionType.
Examples
FIRST = 1234h SECOND = HIGH FIRST ; Sets SECOND to 12h
Upper 16 Bits of DWORD Expression (HIGHWORD Operator)
The HIGHWORDoperator returns the upper 16 bits of a 32-bit expression. Only bits 16-31 are returned, even if the magnitude of the operand exceeds 32 bits.
HIGHWORDCast-Expression
Related Information
Syntax
HIGHWORDCast-Expression
Description
The HIGHWORDoperator returns the upper 16 bits of a 32-bit expression. Only bits 16-31 are returned, even if the magnitude of the operand exceeds 32 bits.
Constraints
The operand must evaluate to a Constant-ExpressionType.
This operator is not available in M510mode.
Examples
FIRST = 12345678h SECOND = HIGHWORD FIRST ; Sets SECOND to 1234h
Lower 8 Bits of WORD Expression (LOW Operator)
The LOWoperator returns the lower 8 bits of its operand.
Related Information
Syntax
Description
The LOWoperator returns the lower 8 bits of its operand.
Constraints
The operand must evaluate to a Constant-ExpressionType.
Examples
FIRST = 1234h SECOND = LOW FIRST ; Sets SECOND to 34h
Lower 16 Bits of DWORD Expression (LOWWORD Operator)
The LOWWORDoperator returns the lower 16 bits of its operand.
LOWWORDCast-Expression
Related Information
Syntax
LOWWORDCast-Expression
Description
The LOWWORDoperator returns the lower 16 bits of its operand.
Constraints
The operand must evaluate to a Constant-ExpressionType.
This operator is not available in M510mode.
Examples
FIRST = 12345678h SECOND = LOWWORD FIRST ; Sets SECOND to 5678h
Type Conversion Expression
A Type Conversion Expressionis one that performs an optional type conversion operation on its operand and returns the result.
Cast-Expression:
Element-Selection-Expression
OFFSETCast-Expression
SEGCast-Expression
THISElement-Selection-Expression
TYPEElement-Selection-Expression
Cast-ExpressionPTRCast-Expression
Cast-Expression:Cast-Expression
Description
A Type Conversion Expressionis one that performs an optional type conversion operation on its operand and returns the result.
Syntax
Cast-Expression:
Element-Selection-Expression
OFFSETCast-Expression
SEGCast-Expression
THISElement-Selection-Expression
TYPEElement-Selection-Expression
Cast-ExpressionPTRCast-Expression
Cast-Expression:Cast-Expression
Address Offset (OFFSET Operator)
The OFFSEToperator returns the offset portion of its operand. For relocatable values, this is the offset into the segment or group to which the expression is relative.
OFFSETCast-Expression
Related Information
Syntax
OFFSETCast-Expression
Description
The OFFSEToperator returns the offset portion of its operand. For relocatable values, this is the offset into the segment or group to which the expression is relative.
Constraints
The operand may evaluate to any one of the following ExpressionTypes:
�Absolute-ExpressionType
�Constant-ExpressionType
�Immediate-ExpressionType
�Direct-ExpressionType
�Indirect-ExpressionType
Examples
CodeLabel : MOV AX , CodeLabel ; illegal , no data at address MOV AX , OFFSET CodeLabel ; we want the address itself
Address Segment (SEG Operator)
The SEGoperator returns the segment or group to which a relocatable expression is relative.
Related Information
Syntax
Description
The SEGoperator returns the segment or group to which a relocatable expression is relative.
Constraints
The operand must evaluate to one of the following ExpressionTypes:
�Immediate-ExpressionType
�Direct-ExpressionType
�Indirect-ExpressionType
�Indexed-ExpressionType
Examples
DATA SEGMENT Stuff DB ? MOV AX , SEG Stuff ; This construct is MOV AX , DATA ; equivalent to this DATA ENDS
Address Alias (THIS Operator)
The THISoperator returns an operand whose:
�Relative Frameattribute is set to that of the current segment
�Displacementattribute is set to the current location counter
�Type Declarationattribute is set to that of the expression given by the Element-Selection-Expressionoperand.
THISElement-Selection-Expression
Related Information
Syntax
THISElement-Selection-Expression
Description
The THISoperator returns an operand whose:
�Relative Frameattribute is set to that of the current segment
�Displacementattribute is set to the current location counter
�Type Declarationattribute is set to that of the expression given by the Element-Selection-Expressionoperand.
Constraints
The operand must evaluate to a Type-ExpressionType.
Examples
DATA SEGMENT ALIAS EQU THIS BYTE ; reference this address as a byte Stuff DB ? MOV AL , ALIAS ; This construct is MOV AL , Stuff ; equivalent to this DATA ENDS
Datatype Extraction (TYPE Operator)
The TYPEoperator returns the Type-ExpressionTypeattribute of its operand.
TYPEElement-Selection-Expression
Related Information
Syntax
TYPEElement-Selection-Expression
Description
The TYPEoperator returns the Type-ExpressionTypeattribute of its operand.
Constraints
None
Examples
CODE SEGMENT ASSUME CS : CODE , DS : CODE Stuff DB ? ; TYPE Stuff is BYTE MOV [ BX ] , ( TYPE Stuff ) PTR 1 ; stores 1 as a BYTE at [ BX ] CODE ENDS
Type Conversion (PTR Operator)
The PTRoperator converts the right operand to the type specified by the left operand.
Cast-ExpressionPTRCast-Expression
Related Information
Syntax
Cast-ExpressionPTRCast-Expression
Description
The PTRoperator converts the right operand to the type specified by the left operand.
Constraints
The left operand must be a Type-ExpressionType.
Examples
CODE SEGMENT MOV BYTE PTR [ BX ] , 1 ; stores 1 as a BYTE at [ BX ] CODE ENDS
Segment Override (: Operator)
The :(colon) operator forces the right operand to have the Relative Frameattribute of the left operand.
Cast-Expression:Cast-Expression
Related Information
Syntax
Cast-Expression:Cast-Expression
Description
The :(colon) operator forces the right operand to have the Relative Frameattribute of the left operand.
Constraints
The left operand must evaluate to one of the following ExpressionTypes:
�Register-ExpressionTypewhere the Register Valueattribute is that of a Segment-Register
�Immediate-ExpressionTypewhere the Relative Frameattribute is that of a GroupNameor SegmentName.
Examples
DATA SEGMENT Variable DW ? DATA ENDS DGROUP GROUP DATA , CODE CODE SEGMENT ASSUME CS : CODE , DS : DGROUP MOV AX , DGROUP : Variable ; insure Variable is relative to DGROUP ASSUME DS : NOTHING MOV BX , CS : Variable ; access Variable through CS register CODE ENDS
Element Selection Expression
A Element Selection Expressionis one that optionally selects a specific element of its operand and returns a reference to it.
Element-Selection-Expression:
Sign-Expression
Element-Selection-Expression[Sign-Expression00476.htm]
Element-Selection-Expression.Sign-Expression
Description
A Element Selection Expressionis one that optionally selects a specific element of its operand and returns a reference to it.
Syntax
Element-Selection-Expression:
Sign-Expression
Element-Selection-Expression[Sign-Expression00476.htm]
Element-Selection-Expression.Sign-Expression
Subscript ([] Operator)
The []binary operator performs a subscripting (or indexing) operation between the operand to the left of the brackets and the operand enclosed within the brackets. This is a simple additive operation of BYTEgranularity; the arithmetic performed is not influenced by the Operand Sizeof either operand.
The syntax for this operator describes a binary operation between the left hand expression and the bracketed expression. The bracketed expression is also subject to the same operations performed during the processing of a standalone Indirected-Expressionas described in the section on Primary- Expressions.
Element-Selection-Expression[Sign-Expression]
Related Information
Syntax
Element-Selection-Expression[Sign-Expression]
Description
The []binary operator performs a subscripting (or indexing) operation between the operand to the left of the brackets and the operand enclosed within the brackets. This is a simple additive operation of BYTEgranularity; the arithmetic performed is not influenced by the Operand Sizeof either operand.
The syntax for this operator describes a binary operation between the left hand expression and the bracketed expression. The bracketed expression is also subject to the same operations performed during the processing of a standalone Indirected-Expressionas described in the section on Primary- Expressions.
Constraints
Only one of the operands may specify a relocatable value.
Examples
CODE SEGMENT ASSUME CS : CODE , DS : CODE Value DB 0 ; Value [ 0 ] DB 1 ; Value [ 1 ] DB 2 ; Value [ 2 ] DB 3 ; Value [ 3 ] DB 4 ; Value [ 4 ] MOV AL , Value [ 3 ] ; load AL with the fourth byte at Value ( 3 ) MOV BX , offset Value ; get address of Value MOV AL , [ BX ] [ 1 ] [ 2 ] ; also gets the fourth byte ( 3 ) CODE ENDS
Structure/Union Field Selection (. Operator)
The .(period) operator selects a structure or union field entry. It adds the left and right hand operands together and returns the result. The left operand should be an Indirect-ExpressionType, Indexed-ExpressionType, or Type-ExpressionTypewhose Type Declarationattribute resolves to that of a Structure-TypeNameor Union-TypeName. The right operand should refer to a FieldNamedefined within the referenced type.
The Operand Sizeattribute of the result depends on the operands involved. If both operands have an operand size, a Structure-FieldNameappearing as the right hand operand would override the operand size of the left operand and would dictate the operand size of the resulting expression.
Element-Selection-Expression.Sign-Expression
Related Information
Syntax
Element-Selection-Expression.Sign-Expression
Description
The .(period) operator selects a structure or union field entry. It adds the left and right hand operands together and returns the result. The left operand should be an Indirect-ExpressionType, Indexed-ExpressionType, or Type-ExpressionTypewhose Type Declarationattribute resolves to that of a Structure-TypeNameor Union-TypeName. The right operand should refer to a FieldNamedefined within the referenced type.
The Operand Sizeattribute of the result depends on the operands involved. If both operands have an operand size, a Structure-FieldNameappearing as the right hand operand would override the operand size of the left operand and would dictate the operand size of the resulting expression.
Constraints
Only one of the operands may specify a relocatable value.
Examples
Number STRUC One DB 1 Two DW 2 Number ENDS ; The following line is only allowed in MASM 5 . 10 mode ( OPTION OLDSTRUCTS ) MOV AX , [ BX ] . Two ; BX points to a " Number " , get the " Two " entry ; In other modes , " Two " is private to the " Number " structure type , so ; one of the following methods are required : MOV AX , ( Number PTR [ BX ] ) . Two ; Explicit override MOV AX , [ BX ] + Number . Two ; Fully qualified reference ASSUME BX : Number ; Associate BX with " Number " MOV AX , [ BX ] . Two ; then original syntax is allowed
Unary Arithmetic Expression
A Unary Arithmetic Expressionis one that optionally alters the sign of its operand and returns the result.
Sign-Expression:
Primary-Expression
-Primary-Expression
+Primary-Expression
Description
A Unary Arithmetic Expressionis one that optionally alters the sign of its operand and returns the result.
Syntax
Sign-Expression:
Primary-Expression
-Primary-Expression
+Primary-Expression
Unary Minus (- Operator)
The -operator makes its operand into a negative number and returns the result.
Related Information
Syntax
Description
The -operator makes its operand into a negative number and returns the result.
Constraints
The operand must evaluate to a Constant-ExpressionType.
Examples
Value EQU 1 MOV AX , - Value ; move - 1 into AX
Unary Plus (+ Operator)
The +operator returns its operand.
Related Information
Syntax
Description
The +operator returns its operand.
Constraints
The operand must evaluate to a Constant-ExpressionType.
Examples
Value EQU 1 MOV AX , + Value ; move 1 into AX
Primary Expression
A Primary Expressionis one that returns an expression operand.
Primary-Expression:
Literal-Operand
Record-Constant
Identifier-Operand
Register-Operand
Integral-TypeName-Operand
Value-Substitution-Operand
LENGTHIdentifier-Operand
LENGTHOFIdentifier-Operand
MASKIdentifier-Operand
SIZEElement-Selection-Expression
SIZEOFElement-Selection-Expression
WIDTHIdentifier-Operand
Parenthesized-Expression
Indirected-Expression
Compound-Initializer
Description
A Primary Expressionis one that returns an expression operand.
Syntax
Primary-Expression:
Literal-Operand
Record-Constant
Identifier-Operand
Register-Operand
Integral-TypeName-Operand
Value-Substitution-Operand
LENGTHIdentifier-Operand
LENGTHOFIdentifier-Operand
MASKIdentifier-Operand
SIZEElement-Selection-Expression
SIZEOFElement-Selection-Expression
WIDTHIdentifier-Operand
Parenthesized-Expression
Indirected-Expression
Compound-Initializer
Literal Operand
The assembler accepts several types of literal values as operands within expressions. Literal-Operandsare converted to ExpressionTypesaccording to the following table:
/-------------------------------------------------------------------------------\ |Floating-Point-Literal |Floating-Point-ExpressionType | |------------------------+------------------------------------------------------| |Integer-Literal |Absolute-ExpressionType | |------------------------+------------------------------------------------------| |String-Literal |Absolute-ExpressionType if the string length is less | | |than or equal to the current Address Size; a | | |String-ExpressionType otherwise. | \-------------------------------------------------------------------------------/
The context where the expression is used determines whether or not a particular type of literal is legal.
Literal-Operand:
Floating-Point-Literal
Integer-Literal
String-Literal
Related Information
Syntax
Literal-Operand:
Floating-Point-Literal
Integer-Literal
String-Literal
Description
The assembler accepts several types of literal values as operands within expressions. Literal-Operandsare converted to ExpressionTypesaccording to the following table:
/-------------------------------------------------------------------------------\ |Floating-Point-Literal |Floating-Point-ExpressionType | |------------------------+------------------------------------------------------| |Integer-Literal |Absolute-ExpressionType | |------------------------+------------------------------------------------------| |String-Literal |Absolute-ExpressionType if the string length is less | | |than or equal to the current Address Size; a | | |String-ExpressionType otherwise. | \-------------------------------------------------------------------------------/
The context where the expression is used determines whether or not a particular type of literal is legal.
Constraints
Arithmetic operations cannot be performed on Floating-Point-Literals, thus they cannot be the operand of a unary or binary operator.
Value Substitution Operand
These operands are used to retrieve specialized values that are calculated internally by the assembler.
The FLAToperator returns an expression whose Relative Frameis set to that of the predefined FLAT pseudo-group.
Value-Substitution-Operand:
Anonymous-Label-Alias
Location-Counter-Alias
Indeterminate-Value-Alias
FLAT
Related Information
Syntax
Value-Substitution-Operand:
Anonymous-Label-Alias
Location-Counter-Alias
Indeterminate-Value-Alias
FLAT
Description
These operands are used to retrieve specialized values that are calculated internally by the assembler.
The FLAToperator returns an expression whose Relative Frameis set to that of the predefined FLAT pseudo-group.
Constraints
The FLAToperand is only active when a 32-bit processor has been selected.
Record Constant Operand
A Record-Constantprovides a method of calculating a single numeric result value from a list of Record-FieldNamevalues, and combining them together according to the definition of the Record-TypeNamegiven by the Identifier- Operand. The result value is a Constant-ExpressionTypesuitable for use as an instruction operand, or for assigning to a record variable.
The Record-TypeNamegiven by the Identifier-Operanddetermines how the Field-Listwill be evaluated. The Attribute-Expressionentries are position-dependent, and are matched with the corresponding Record-FieldNameentries from the Record-TypeNamedefinition to determine their width and shift values. Attribute-Expressionentries may be omitted, in which case the default values from the record definition are used in the calculation.
Record-Constant:
Identifier-Operand<Field-List>
Identifier-Operand{Field-List}
Field-List:
Attribute-Expression
Field-List,Attribute-Expression
Related Information
Syntax
Record-Constant:
Identifier-Operand<Field-List>
Identifier-Operand{Field-List}
Field-List:
Attribute-Expression
Field-List,Attribute-Expression
Description
A Record-Constantprovides a method of calculating a single numeric result value from a list of Record-FieldNamevalues, and combining them together according to the definition of the Record-TypeNamegiven by the Identifier- Operand. The result value is a Constant-ExpressionTypesuitable for use as an instruction operand, or for assigning to a record variable.
The Record-TypeNamegiven by the Identifier-Operanddetermines how the Field-Listwill be evaluated. The Attribute-Expressionentries are position-dependent, and are matched with the corresponding Record-FieldNameentries from the Record-TypeNamedefinition to determine their width and shift values. Attribute-Expressionentries may be omitted, in which case the default values from the record definition are used in the calculation.
Constraints
The Identifier-Operandmust resolve to a Record-TypeName.
Examples
DATE _ T record Year : 7 = 0 , ; 0 is 1980 Month : 4 = 1 , ; January Day : 5 = 1 ; 1st CODE SEGMENT mov AX , DATE _ T < > ; January 1st , 1980 mov AX , DATE _ T < 1996 - 1980 , 12 , 25 > ; Christmas , 1996 mov AX , DATE _ T < 10h , 0Ch , 19h > ; equivalent values in hex mov AX , DATE _ T < 10000y , 1100y , 11001y > ; equivalent values in binary mov AX , 2199h ; equivalent value manually coded mov AX , 0010000110011001y ; and in binary ; YYYYYYYMMMMDDDDD CODE ENDS
Register Operand
Processor registers are valid expression operands. The context where the expression is used determines the allowable register operands.
Register-Operand:
Processor-Register
Related Information
Syntax
Register-Operand:
Processor-Register
Description
Processor registers are valid expression operands. The context where the expression is used determines the allowable register operands.
Constraints
The currently selected processor dictates whether or not a register is visible to the expression evaluator.
Identifier Operand
When an Identifieris used in an expression, it returns a value according to its Identifier-Type, as shown in the following table:
/-------------------------------------------------------------------------------\ |Identifier-Type |VALUE RETURNED | |--------------------+----------------------------------------------------------| |Numeric-EquateName |The value originally assigned to the equate. | |--------------------+----------------------------------------------------------| |Structure-FieldName |The offset in bytes from the beginning of the structure. | |--------------------+----------------------------------------------------------| |Union-FieldName |The offset in bytes from the beginning of the union | | |(always 0). | |--------------------+----------------------------------------------------------| |Record-FieldName |The shift-count required to reach the field within the | | |record. | |--------------------+----------------------------------------------------------| |Record-TypeName |The mask-value that isolates defined record fields from | | |undefined fields. | |--------------------+----------------------------------------------------------| |Structure-TypeName |Zero if mode is M510, otherwise the size of the structure | | |in bytes (the operand size of the structure type). | |--------------------+----------------------------------------------------------| |Union-TypeName |The size of the union in bytes (the operand size of the | | |union type). | |--------------------+----------------------------------------------------------| |Typedef-TypeName |The operand size of the underlying data-type represented | | |by the Typedef-TypeName. | |--------------------+----------------------------------------------------------| |GroupName |A Relative Frame attribute that represents the group, and | | |a Displacement value of zero. | |--------------------+----------------------------------------------------------| |SegmentName |A Relative Frame attribute that represents the segment (or| | |the group to which it belongs), and a Displacement value | | |of zero if the mode is M510, or the current segment offset| | |otherwise. | |--------------------+----------------------------------------------------------| |LabelName |The Relative Frame attribute where the label is defined, | | |and the segment offset value of the label. | \-------------------------------------------------------------------------------/
Identifier-Operand:
Identifier
Related Information
Syntax
Identifier-Operand:
Identifier
Description
When an Identifieris used in an expression, it returns a value according to its Identifier-Type, as shown in the following table:
/-------------------------------------------------------------------------------\ |Identifier-Type |VALUE RETURNED | |--------------------+----------------------------------------------------------| |Numeric-EquateName |The value originally assigned to the equate. | |--------------------+----------------------------------------------------------| |Structure-FieldName |The offset in bytes from the beginning of the structure. | |--------------------+----------------------------------------------------------| |Union-FieldName |The offset in bytes from the beginning of the union | | |(always 0). | |--------------------+----------------------------------------------------------| |Record-FieldName |The shift-count required to reach the field within the | | |record. | |--------------------+----------------------------------------------------------| |Record-TypeName |The mask-value that isolates defined record fields from | | |undefined fields. | |--------------------+----------------------------------------------------------| |Structure-TypeName |Zero if mode is M510, otherwise the size of the structure | | |in bytes (the operand size of the structure type). | |--------------------+----------------------------------------------------------| |Union-TypeName |The size of the union in bytes (the operand size of the | | |union type). | |--------------------+----------------------------------------------------------| |Typedef-TypeName |The operand size of the underlying data-type represented | | |by the Typedef-TypeName. | |--------------------+----------------------------------------------------------| |GroupName |A Relative Frame attribute that represents the group, and | | |a Displacement value of zero. | |--------------------+----------------------------------------------------------| |SegmentName |A Relative Frame attribute that represents the segment (or| | |the group to which it belongs), and a Displacement value | | |of zero if the mode is M510, or the current segment offset| | |otherwise. | |--------------------+----------------------------------------------------------| |LabelName |The Relative Frame attribute where the label is defined, | | |and the segment offset value of the label. | \-------------------------------------------------------------------------------/
Constraints
The Identifiermust resolve to one of the following Identifier-Types:
�Numeric-EquateName
�FieldName
�GroupName
�LabelName
�SegmentName
�UserDefined-TypeName
Integral Type-Name Operand
When an Integral-TypeName-Operandis used in an expression, it is converted to a Type-ExpressionType. If used in a numeric context, the following numeric values are returned:
/-------------------------------------------------------------------------------\ |Integral-TypeName-Operand|VALUE RETURNED | |-------------------------+-----------------------------------------------------| |Scalar-TypeName |The operand-size of the type in bytes. | |-------------------------+-----------------------------------------------------| |Distance-TypeName |If mode is M510, NEAR returns FFFF, and FAR returns | | |FFFE. Otherwise, NEAR and FAR are resolved and the | | |values returned are: NEAR16=FF02, NEAR32=FF04, | | |FAR16=FF05, FAR32=FF06. | \-------------------------------------------------------------------------------/
Integral-TypeName-Operand:
Scalar-TypeName
Distance-TypeName
Related Information
Syntax
Integral-TypeName-Operand:
Scalar-TypeName
Distance-TypeName
Description
When an Integral-TypeName-Operandis used in an expression, it is converted to a Type-ExpressionType. If used in a numeric context, the following numeric values are returned:
/-------------------------------------------------------------------------------\ |Integral-TypeName-Operand|VALUE RETURNED | |-------------------------+-----------------------------------------------------| |Scalar-TypeName |The operand-size of the type in bytes. | |-------------------------+-----------------------------------------------------| |Distance-TypeName |If mode is M510, NEAR returns FFFF, and FAR returns | | |FFFE. Otherwise, NEAR and FAR are resolved and the | | |values returned are: NEAR16=FF02, NEAR32=FF04, | | |FAR16=FF05, FAR32=FF06. | \-------------------------------------------------------------------------------/
Constraints
The NEAR32and FAR32keywords are only valid if a 32-bit processor has been selected.
Number of Data Elements (LENGTH Operator)
The LENGTHoperator returns the number of data elements allocated to the operand. When applied to a variable initialized with a series of comma- separated expressions (elements), only the length of the first element is considered.
LENGTHIdentifier-Operand
Related Information
Syntax
LENGTHIdentifier-Operand
Description
The LENGTHoperator returns the number of data elements allocated to the operand. When applied to a variable initialized with a series of comma- separated expressions (elements), only the length of the first element is considered.
Constraints
The operand must evaluate to a Data-LabelName.
Number of Data Elements (LENGTHOF Operator)
The LENGTHOFoperator returns the number of data elements allocated to the operand.
LENGTHOFIdentifier-Operand
Related Information
Syntax
LENGTHOFIdentifier-Operand
Description
The LENGTHOFoperator returns the number of data elements allocated to the operand.
Constraints
The operand must evaluate to a Data-LabelName.
This operator is not available in M510mode.
Examples
<none>
Record or Field Bit-Mask (MASK Operator)
The MASKoperator returns the bit mask required to isolate a field within a record.
Related Information
Syntax
Description
The MASKoperator returns the bit mask required to isolate a field within a record.
Constraints
The Identifier-Operandmust resolve to a Record-TypeNameor Record- FieldName; otherwise the result is zero.
Size of Variable in Bytes (SIZE Operator)
The SIZEoperator returns the number of bytes allocated to the operand. When applied to a variable initialized with a series of comma-separated expressions (elements), only the size of the first element is considered.
SIZEElement-Selection-Expression
Related Information
Syntax
SIZEElement-Selection-Expression
Description
The SIZEoperator returns the number of bytes allocated to the operand. When applied to a variable initialized with a series of comma-separated expressions (elements), only the size of the first element is considered.
Constraints
None
Size of Variable in Bytes (SIZEOF Operator)
The SIZEOFoperator returns the number of bytes allocated to the operand.
SIZEOFElement-Selection-Expression
Related Information
Syntax
SIZEOFElement-Selection-Expression
Description
The SIZEOFoperator returns the number of bytes allocated to the operand.
Constraints
This operator is not available in M510mode.
Record or Field Width (WIDTH Operator)
The WIDTHoperator returns the width of a record or a record field name.
WIDTHIdentifier-Operand
Related Information
Syntax
WIDTHIdentifier-Operand
Description
The WIDTHoperator returns the width of a record or a record field name.
Constraints
The Identifier-Operandmust resolve to a Record-TypeNameor Record- FieldName; otherwise the result is zero.
Precedence (() Operator)
Parentheses forces the Attribute-Expressionoperand to be evaluated at a higher precedence level.
Parenthesized-Expression:
(Attribute-Expression)
Related Information
Syntax
Parenthesized-Expression:
(Attribute-Expression)
Description
Parentheses forces the Attribute-Expressionoperand to be evaluated at a higher precedence level.
Examples
Value = 2 + 3 * 4 ; Value = 14 Value = ( 2 + 3 ) * 4 ; Value = 20
Indirection ([] Operator)
During evaluation of the Attribute-Expression, the [](indirection) operator will convert a Register-ExpressionTypeto a Indexed-ExpressionTypeby moving the Register Valueattribute to either the Base Registeror Index Registerattribute field as appropriate for the register(s) referenced in the expression. This operation allows values contained in the processor registers to be used during effective address calculation at application run time.
Indirected-Expression:
[Attribute-Expression]
Related Information
Syntax
Indirected-Expression:
[Attribute-Expression]
Description
During evaluation of the Attribute-Expression, the [](indirection) operator will convert a Register-ExpressionTypeto a Indexed-ExpressionTypeby moving the Register Valueattribute to either the Base Registeror Index Registerattribute field as appropriate for the register(s) referenced in the expression. This operation allows values contained in the processor registers to be used during effective address calculation at application run time.
Constraints
See the Indexed-ExpressionTypesection for information on registers that are valid for use in this context.
Examples
CODE SEGMENT ASSUME CS : CODE , DS : CODE Value DW 0 MOV BX , offset Value ; load the address of Value into BX MOV [ BX ] , BX ; store the contents of BX into the ; memory location addressed by [ BX ] CODE ENDS
Compound Initializer List (<> Operator)
The <>(or {}) operator provides a way of specifying a list of expressions to be used for initializing complex (multi-field) variables such as records or structures.
The <>operator encloses a list of comma-separated expressions; individual expressions are optional, but are also positional with respect to the record or structure fields they are intended to initialize. Commas must therefore be used to maintain field positions if empty expressions are encountered in the list.
The initializer list itself may also be left out entirely for those cases where a variable allocation will use the default initializers provided in the record or structure definition (the <>or {}themselves are still required).
Compound-Initializer:
<Initializer-List>
{Initializer-List}
Initializer-List:
Duplicative-Expression
Initializer-List,Duplicative-Expression
Related Information
Syntax
Compound-Initializer:
<Initializer-List>
{Initializer-List}
Initializer-List:
Duplicative-Expression
Initializer-List,Duplicative-Expression
Description
The <>(or {}) operator provides a way of specifying a list of expressions to be used for initializing complex (multi-field) variables such as records or structures.
The <>operator encloses a list of comma-separated expressions; individual expressions are optional, but are also positional with respect to the record or structure fields they are intended to initialize. Commas must therefore be used to maintain field positions if empty expressions are encountered in the list.
The initializer list itself may also be left out entirely for those cases where a variable allocation will use the default initializers provided in the record or structure definition (the <>or {}themselves are still required).
Examples
Numbers STRUCT One DB 0 Two DW 0 Three DB 0 Four DD 0 Numbers ENDS First Numbers < > ; empty initializer list Second Numbers < 1 , 2 , 3 , 4 > ; override all defaults Third Numbers < 1 > ; override first entry only Fourth Numbers < 1 , , , 4 > ; override first and last entries
Expression Evaluation
After an expression is parsed and checked for syntax errors, it is evaluated. During evaluation, all calculations and conversions are performed on the operands according to the operators that are applied to them. The final result is a collection of Expression-Attributes, to which an ExpressionTypeis assigned.
Expression Attributes
This section describes the Expression-Attributesthat are associated with an expression after it is evaluated.
Address Size
If an expression refers to an effective address, then it also has an associated address size. The following ExpressionTypesnormally reference an effective address, and thus have an associated address size:
�Immediate-ExpressionType
�Direct-ExpressionType
�Indirect-ExpressionType
�Indexed-ExpressionType
The address size can be either 2 (USE16) or 4 (USE32). For an expression that references a label, the address size of the segment where the label is defined determines the address size of the expression.
Operand Size
The Operand Sizeof an expression can be set explicitly using the Type Conversion (PTR Operator), or it may be a side-effect inherited from the type of data referenced in the expression. The following table describes the operand sizes that will be assigned when an identifier is referenced in an expression:
/-------------------------------------------------------------\ |REFERENCE |OPERAND SIZE | |-------------------------+-----------------------------------| |8-Bit-Register |1 | |-------------------------+-----------------------------------| |16-Bit-Register |2 | |-------------------------+-----------------------------------| |32-Bit-Register |4 | |-------------------------+-----------------------------------| |Segment-Register |2 | |-------------------------+-----------------------------------| |Control-Register |4 | |-------------------------+-----------------------------------| |Debug-Register |4 | |-------------------------+-----------------------------------| |Test-Register |4 | |-------------------------+-----------------------------------| |MMX-Register |8 | |-------------------------+-----------------------------------| |Floating-Point-Register |10 | |-------------------------+-----------------------------------| |BYTE |1 | |-------------------------+-----------------------------------| |SBYTE |1 | |-------------------------+-----------------------------------| |WORD |2 | |-------------------------+-----------------------------------| |SWORD |2 | |-------------------------+-----------------------------------| |DWORD |4 | |-------------------------+-----------------------------------| |SDWORD |4 | |-------------------------+-----------------------------------| |REAL4 |4 | |-------------------------+-----------------------------------| |FWORD |6 | |-------------------------+-----------------------------------| |QWORD |8 | |-------------------------+-----------------------------------| |REAL8 |8 | |-------------------------+-----------------------------------| |TBYTE |10 | |-------------------------+-----------------------------------| |REAL10 |10 | |-------------------------+-----------------------------------| |NEAR |2 or 4 | |-------------------------+-----------------------------------| |NEAR16 |2 | |-------------------------+-----------------------------------| |NEAR32 |4 | |-------------------------+-----------------------------------| |FAR |4 or 6 | |-------------------------+-----------------------------------| |FAR16 |4 | |-------------------------+-----------------------------------| |FAR32 |6 | |-------------------------+-----------------------------------| |Numeric-EquateName |Inherited from equate expression | |-------------------------+-----------------------------------| |GroupName |2 | |-------------------------+-----------------------------------| |SegmentName |2 | |-------------------------+-----------------------------------| |Code-LabelName |SIZE (TYPE Code-LabelName) | |-------------------------+-----------------------------------| |Data-LabelName |SIZE (TYPE Data-LabelName) | |-------------------------+-----------------------------------| |Structure-FieldName |SIZE Structure-FieldName | |-------------------------+-----------------------------------| |Record-TypeName |SIZE Record-TypeName | |-------------------------+-----------------------------------| |Structure-TypeName |SIZE Structure-TypeName | |-------------------------+-----------------------------------| |Union-TypeName |SIZE Union-TypeName | \-------------------------------------------------------------/
The Operand Sizeis 0 for all other identifier types.
Displacement
The Displacementvalue in an expression is the final calculated value of all numeric quantities, and must be a scalar value. It may also be a reference to a relocatable address, in which case the expression will also have a Relative Frameand/or an External Referenceattribute. A Displacementmay be used in the calculation of an effective address, either alone or in combination with a Base Registerand/or an Index Register.
Relative Frame
The Relative Frameattribute will be present if the expression contains a direct or indirect reference to any of the following Identifier-Types:
�GroupName
�LabelName
�SegmentName
The Relative Frameattribute indicates that the expression is relocatable, and specifies the GroupNameor SegmentNameto which the expression is relative.
External Reference
The External Referenceattribute will be present if the expression references any external identifiers.
Register Value
The Register Valueattribute specifies the value of the Processor-Registerreferenced in a Register-ExpressionType.
Base Register
The Base Registerattribute specifies the value for the base register used in an Indexed-ExpressionType.
Index Register
The Index Registerattribute specifies the value for the index register used in an Indexed-ExpressionType.
Scale Factor
The Scale Factorattribute specifies the scaling value used (if any) in an Indexed-ExpressionType.
Type Declaration
The Type Declarationattribute specifies the type of data referenced in the expression. This is the value extracted from the expression when it is used as the left operand of the Type Conversion (PTR Operator).
Expression Types
An ExpressionTypeis assigned to every expression during evaluation. The ExpressionTypeis used to determine whether or not an expression is legal for the context in which it is used. The type of an expression is influenced primarily by the operands that are used, but the use of expression operators also play an important part in determining the type of an expression.
ExpressionType:
Absolute-ExpressionType
Constant-ExpressionType
Direct-ExpressionType
Floating-Point-ExpressionType
Immediate-ExpressionType
Indirect-ExpressionType
Indexed-ExpressionType
Register-ExpressionType
String-ExpressionType
Type-ExpressionType
Duplicated-ExpressionType
Compound-ExpressionType
Description
An ExpressionTypeis assigned to every expression during evaluation. The ExpressionTypeis used to determine whether or not an expression is legal for the context in which it is used. The type of an expression is influenced primarily by the operands that are used, but the use of expression operators also play an important part in determining the type of an expression.
Definition
ExpressionType:
Absolute-ExpressionType
Constant-ExpressionType
Direct-ExpressionType
Floating-Point-ExpressionType
Immediate-ExpressionType
Indirect-ExpressionType
Indexed-ExpressionType
Register-ExpressionType
String-ExpressionType
Type-ExpressionType
Duplicated-ExpressionType
Compound-ExpressionType
Absolute Expression Type
An Absolute-ExpressionTypeis an expression that evaluates to an integer quantity. Its value must be representable using one of the following types of scalar data:
�BYTE
�SBYTE
�WORD
�SWORD
�DWORD
�SDWORD
�FWORD
�QWORD
�TBYTE
The following restrictions apply to an Absolute-ExpressionType:
�It cannot be relocatable (it may not contain references to a GroupName, SegmentNameor LabelName).
�It cannot reference any externalsymbols.
�It cannot contain any forward references.
Constant Expression Type
A Constant-ExpressionTypeis an Absolute-ExpressionTypewith the following restrictions relaxed:
�It may contain forward references to identifiers defined later in the source stream.
�It may reference a single externalsymbol, provided that the symbol was declared in an EXTERNdirective with the ABSattribute.
Immediate Expression Type
An Immediate-ExpressionTypehas all the properties of a Constant- ExpressionTypewith the following restrictions relaxed:
�It may contain references to a GroupName, SegmentNameor LabelName(it may be relocatable).
�It may reference a relocatable externalsymbol.
An Immediate-ExpressionTypemust not be larger than 32 bits in magnitude; its value must be representable using one of the following types of scalar data:
�BYTE
�SBYTE
�WORD
�SWORD
�DWORD
�SDWORD
Direct Expression Type
A Direct-ExpressionTypeis an expression that references a Code-LabelName. It can be used directly in code-relative instructions without conversion. There is no data type associated with the address that a Direct- ExpressionTyperepresents, therefore It may not be used in a data-relative instruction without first being explicitly converted to another expression type.
Indirect Expression Type
An Indirect-ExpressionTypeis an expression that references a Data- LabelName. It can be used directly in data-relative instructions without conversion to another expression type.
Indexed Expression Type
An Indexed-ExpressionTypeis an expression that calculates an effective memory address using the contents of a Base-Register, an Index-Register, or both. A Processor-Registermust first be converted to a Base-Registeror Index-Registerby specifying it as the operand of the Indirection ([] Operator)before the expression can be converted to an Indexed- ExpressionType.
When calculating a 16-bit effective address, only the BPand BXregisters may be used as Base-Registers, and only the DIand SIregisters may be used as Index-Registers.
When calculating a 32-bit effective address, only the EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESPregisters may be used as Base-Registers, and only the EAX, EBX, ECX, EDX, EDI, ESI, and EBPregisters may be used as Index- Registers.
Note:Only a single Base-Registerand a single Index-Registermay be used in a given expression.
On 80386 (and higher) processors, the Multiplication (* Operator)may be used with an Index-Registeroperand and an Absolute-ExpressionTypeoperand to establish a scaling factor that is applied to the Index-Registerduring effective address calculation. The scaling factor effectively causes the Index-Registerto be multiplied by a fixed value at run time. The scaling Expressionmust evaluate to 1 (no scale factor), 2, 4, or 8.
A Direct-ExpressionTypeor an Indirect-ExpressionTypemay be a sub- expression of an Indexed-ExpressionType.
Register Expression Type
A Register-ExpressionTypeis an expression that specifies a single Processor-Register.
String Expression Type
A String-ExpressionTypeis an expression that specifies a single String- Literal.
Floating-Point Expression Type
A Floating-Point-ExpressionTypeis an expression that specifies a single Floating-Point-Literal.
Type Expression Type
A Type-ExpressionTypeis an expression that specifies one of the following:
�A Scalar-TypeName
�A Distance-TypeName
�A UserDefined-TypeName
Compound Expression Type
A Compound-ExpressionTypeevaluates to a list of (possibly nested) expressions collected together as a unit by the Compound Initializer List ( <> Operator). A Compound-ExpressionTypeis used to initialize aggregatedata types (such as records, structures, and unions) and vectordata types (arrays).
Duplicated Expression Type
A Duplicated-ExpressionTypeevaluates to an expression that is to be duplicated (repeated) a specified number of times. This type of expression is created using the Duplicative Initialization (DUP Operator).
Operand Expression Type
An Operand-ExpressionTypeconsists of those ExpressionTypesthat are valid for use as operands in processor instructions. The following ExpressionTypesare not valid for use as an Operand-ExpressionType:
�Compound-ExpressionType
�Duplicated-ExpressionType
A String-ExpressionTypeis only valid as an Operand-ExpressionTypeif it is short enough to be converted to an Absolute-ExpressionTypehaving an Operand Sizeless than or equal to the current Address Sizesetting.
Operand-ExpressionType:
Absolute-ExpressionType
Constant-ExpressionType
Immediate-ExpressionType
Direct-ExpressionType
Indirect-ExpressionType
Indexed-ExpressionType
Register-ExpressionType
String-ExpressionType
Floating-Point-ExpressionType
Type-ExpressionType
Description
An Operand-ExpressionTypeconsists of those ExpressionTypesthat are valid for use as operands in processor instructions. The following ExpressionTypesare not valid for use as an Operand-ExpressionType:
�Compound-ExpressionType
�Duplicated-ExpressionType
A String-ExpressionTypeis only valid as an Operand-ExpressionTypeif it is short enough to be converted to an Absolute-ExpressionTypehaving an Operand Sizeless than or equal to the current Address Sizesetting.
Definition
Operand-ExpressionType:
Absolute-ExpressionType
Constant-ExpressionType
Immediate-ExpressionType
Direct-ExpressionType
Indirect-ExpressionType
Indexed-ExpressionType
Register-ExpressionType
String-ExpressionType
Floating-Point-ExpressionType
Type-ExpressionType
Initializer Expression Type
An Initializer-ExpressionTypeconsists of those ExpressionTypesthat are valid for use in initializing variables. The following ExpressionTypesare not valid Initializer-ExpressionTypes:
�Indexed-ExpressionType
�Register-ExpressionType
Initializer-ExpressionType:
Scalar-Initializer-ExpressionType
Compound-ExpressionType
Duplicated-ExpressionType
Scalar-Initializer-ExpressionType:
Absolute-ExpressionType
Constant-ExpressionType
Immediate-ExpressionType
Direct-ExpressionType
Indirect-ExpressionType
String-ExpressionType
Floating-Point-ExpressionType
Type-ExpressionType
Description
An Initializer-ExpressionTypeconsists of those ExpressionTypesthat are valid for use in initializing variables. The following ExpressionTypesare not valid Initializer-ExpressionTypes:
�Indexed-ExpressionType
�Register-ExpressionType
Definition
Initializer-ExpressionType:
Scalar-Initializer-ExpressionType
Compound-ExpressionType
Duplicated-ExpressionType
Scalar-Initializer-ExpressionType:
Absolute-ExpressionType
Constant-ExpressionType
Immediate-ExpressionType
Direct-ExpressionType
Indirect-ExpressionType
String-ExpressionType
Floating-Point-ExpressionType
Type-ExpressionType
Text Preprocessor
The text preprocessor is a functional unit within the assembler that performs the text preprocessingtranslation phase. During text preprocessing, the following actions are performed:
1.Language Elements are recognized.
2.Text equates and macros are expanded.
3.Macro directives and conditional assembly directives are recognized and processed.
4.The preprocessed output is passed on to the assembler for final processing.
This section also describes the various types of preprocessor directives:
/-----------------------------------------------------------------------------\ |Type |Function |Directives | |-------------------------+-------------------------+-------------------------| |Conditional Assembly |Tests for a specified |IF | | |condition and assembles a|IFB | | |block of statements if |IFDEF | | |the condition is true. |IFDIFI | | | |IFE | | | |IFIDN | | | |IFNB | | | |IFNDEF | | | |IF1 | | | |IF2 | | | |ELSE | | | |ENDIF | |-------------------------+-------------------------+-------------------------| |Text Equate |Allows assignment of |CATSTR | | |simple text strings to a |EQU | | |symbolic name. Provides |INSTR | | |functions for expanding |SIZESTR | | |and operating on the |SUBSTR | | |values. | | |-------------------------+-------------------------+-------------------------| |Macro |Provides text processing |ENDM | | |that is done sequentially|EXITM | | |at assembly time. By the |FOR | | |end of assembly, ALP |FORC | | |expands all macros and |IRP | | |assembles the resulting |IRPC | | |text into object code. |LOCAL | | | |MACRO | | | |PURGE | | | |REPEAT | | | |REPT | |-------------------------+-------------------------+-------------------------| |Miscellaneous |Miscellaneous text |COMMENT | | |processing functions. |ECHO | | | |%OUT | | | |INCLUDE | \-----------------------------------------------------------------------------/
Text Operators
The Text Preprocessorrecognizes certain punctuator characters as text operators. The programmer may use these operators to force the Text Preprocessorto perform various operations such as delineating text, expanding arguments, and converting expressions into their text representations.
Text-Operator:
Literal-Character-Operator
Literal-Text-Operator
Text-Expansion-Operator
Text-Substitution-Operator
Description
The Text Preprocessorrecognizes certain punctuator characters as text operators. The programmer may use these operators to force the Text Preprocessorto perform various operations such as delineating text, expanding arguments, and converting expressions into their text representations.
Syntax
Text-Operator:
Literal-Character-Operator
Literal-Text-Operator
Text-Expansion-Operator
Text-Substitution-Operator
Literal Character Operator (!)
When you use an exclamation point (!) in an operand, ALP treats the next character literally. (!) is typically used to prevent the assembler from recognizing and acting upon special characters such as the semicolon (;) or the ampersand (&), forcing them to appear as normal data characters.
Literal-Character-Operator:
!any printable character
Related Information
Syntax
Literal-Character-Operator:
!any printable character
Description
When you use an exclamation point (!) in an operand, ALP treats the next character literally. (!) is typically used to prevent the assembler from recognizing and acting upon special characters such as the semicolon (;) or the ampersand (&), forcing them to appear as normal data characters.
Constraints
The Literal-Character-Operatorhas no effect when used inside of a String- Literal.
Examples
In this example, use of the ! in the second macro argument prevents the assembler from interpreting the rest of the line as a comment:
MACRONAME First , ! ; NonComment , Third ; Comment
Literal Text Operator (<>)
The literal-text operator directs the assembler to treat Char-Sequenceas a single literal element regardless of whether it contains commas, spaces, or other separators. The operator is most often used with macro calls and the FOR directive to ensure that values in a parameter list are treated as a single parameter.
The literal-text operator can also be used to force ALP to treat other special characters such as the semicolon (;) or the ampersand (&) literally . For example, the semicolon inside angle brackets (<;>) becomes a semicolon, not a comment indicator.
ALP removes one set of angle brackets each time the parameter is used in a macro. When using nested macros, you will need to supply as many sets of angle brackets as there are levels of nesting. The assembler recognizes nested occurrences of text literals.
Literal-Text-Operator:
<Char-Sequence>
Char-Sequence
any printable character
Char-Sequenceany printable character
Related Information
Syntax
Literal-Text-Operator:
<Char-Sequence>
Char-Sequence
any printable character
Char-Sequenceany printable character
Description
The literal-text operator directs the assembler to treat Char-Sequenceas a single literal element regardless of whether it contains commas, spaces, or other separators. The operator is most often used with macro calls and the FOR directive to ensure that values in a parameter list are treated as a single parameter.
The literal-text operator can also be used to force ALP to treat other special characters such as the semicolon (;) or the ampersand (&) literally . For example, the semicolon inside angle brackets (<;>) becomes a semicolon, not a comment indicator.
ALP removes one set of angle brackets each time the parameter is used in a macro. When using nested macros, you will need to supply as many sets of angle brackets as there are levels of nesting. The assembler recognizes nested occurrences of text literals.
Examples
The following example illustrates how to pass arbitrary text to a macro as a single parameter:
MACRONAME First , < Second Argument > , < Third , < Nested > , Argument >
The macro will receive three separate arguments:
1.First
2.Second Argument
3.Third, <Nested>, Argument
Notice that the outermost set of angle brackets were removed from the second and third arguments.
Text Expansion Operator (%)
The %Text-Expansion-Operatorhas different effects depending upon the context in which it is used. Its primary purpose is convert various sources of information into text literals that may in turn be passed to macros as arguments.
The %Text-Expansion-Operatorcauses the following types of conversions:
Line Expansion
When used as the first token on the line, the %operator forces expansion of Text-EquateNamesin contexts where they would otherwise be left unexpanded. Text-EquateNamespassed as arguments to macros are not automatically expanded; this is one context where the %operator is useful.
Expansion of a Text Equate Operand
As with Line Expansion, the %operator may be used within the body of a line to expand individual Text-EquateNames. This can be useful when expansion of all Text-EquateNameson the line is not desired.
Conversion of Numeric Expression to Text
If the Text-Expansion-Operatoris not the first token on the line or immediately followed by a Text-EquateName, then the argument of the %operator is assumed to be an Expression, which is evaluated and converted to the text representation of its value. This is useful when the need arises to pass the text representation of a number to a macro.
Text-Expansion-Operator:
%2nd through Nth token on line
%Text-EquateName
%Expression
Related Information
Syntax
Text-Expansion-Operator:
%2nd through Nth token on line
%Text-EquateName
%Expression
Description
The %Text-Expansion-Operatorhas different effects depending upon the context in which it is used. Its primary purpose is convert various sources of information into text literals that may in turn be passed to macros as arguments.
The %Text-Expansion-Operatorcauses the following types of conversions:
Line Expansion
When used as the first token on the line, the %operator forces expansion of Text-EquateNamesin contexts where they would otherwise be left unexpanded. Text-EquateNamespassed as arguments to macros are not automatically expanded; this is one context where the %operator is useful.
Expansion of a Text Equate Operand
As with Line Expansion, the %operator may be used within the body of a line to expand individual Text-EquateNames. This can be useful when expansion of all Text-EquateNameson the line is not desired.
Conversion of Numeric Expression to Text
If the Text-Expansion-Operatoris not the first token on the line or immediately followed by a Text-EquateName, then the argument of the %operator is assumed to be an Expression, which is evaluated and converted to the text representation of its value. This is useful when the need arises to pass the text representation of a number to a macro.
Constraints
When the %Expressionform of the expansion operator is used, the Expressionmust evaluate to an Immediate-ExpressionType.
Examples
MakErr MACRO X LB = 0 REPEAT X LB = LB + 1 MakLib % LB ENDM ; ; End of REPEAT ENDM ; ; End of MACRO MakLib MACRO Y Err & Y : DB ' Error & Y ' , 0 ENDM MakErr 3 Err1 : DB ' Error 1 ' , 0 Err2 : DB ' Error 2 ' , 0 Err3 : DB ' Error 3 ' , 0
Text Substitution Operator (&)
An ampersand (&) is used in the body of a macro to force the substitution of a Macro-ParameterNamewith the value of its argument during expansion of the macro.
Text-Substitution-Operator:
Macro-ParameterName&
&Macro-ParameterName
Related Information
Syntax
Text-Substitution-Operator:
Macro-ParameterName&
&Macro-ParameterName
Description
An ampersand (&) is used in the body of a macro to force the substitution of a Macro-ParameterNamewith the value of its argument during expansion of the macro.
Constraints
The assembler does not substitute a Macro-ParameterNamethat is in a quoted string or not preceded by a delimiter in the expansion unless it is immediately preceded by an ampersand (&).
It is necessary to separate a Macro-ParameterNamefrom other Identifer- Characterswith an ampersand (&) before any substitution or paste operations are performed.
Examples
ErrGen MACRO X Error & X : push bx ABX mov BX , " A " AB & X jmp ERROR ENDM
The statement ErrGen Aproduces this code:
ErrorA : push bx ABX mov BX , " A " ABA jmp ERROR
Preprocessor Tokens
During the text preprocessing translation phase, certain conditions will cause the preprocessor to convert raw Language Elements(Tokens) into Preprocessing-Tokens. The act of text preprocessing typically causes Preprocessing-Tokensto either be removed from the input stream or converted back into Tokensbefore being passed on to the assembler for final processing.
Preprocessing-Token:
Identifier
Text-Literal
FileName
Comment
Description
During the text preprocessing translation phase, certain conditions will cause the preprocessor to convert raw Language Elements(Tokens) into Preprocessing-Tokens. The act of text preprocessing typically causes Preprocessing-Tokensto either be removed from the input stream or converted back into Tokensbefore being passed on to the assembler for final processing.
Syntax
Preprocessing-Token:
Identifier
Text-Literal
FileName
Comment
Text Literals
A Text-Literalis a single unit of text that is used by the Text Preprocessorin many different text handling contexts. In some contexts ( such as the processing of arguments to be passed to a macro), normal language Tokensare implicitly treated as Text-Literals, provided they are not a delimiter character such as a comma or a blank. In other contexts, it may be necessary to explicitly convert a unit of text to a Text-Literalusing the Literal-Text-Operator.
Text-Literal:
operand of Literal-Character-Operator
operand of Literal-Text-Operator
Related Information
Syntax
Text-Literal:
operand of Literal-Character-Operator
operand of Literal-Text-Operator
Description
A Text-Literalis a single unit of text that is used by the Text Preprocessorin many different text handling contexts. In some contexts ( such as the processing of arguments to be passed to a macro), normal language Tokensare implicitly treated as Text-Literals, provided they are not a delimiter character such as a comma or a blank. In other contexts, it may be necessary to explicitly convert a unit of text to a Text-Literalusing the Literal-Text-Operator.
Constraints
A normal language Tokenis never implicitly considered to be a Text-Literalif a Text-Literalis explicitly required in the syntax of the construct being parsed.
File Names
FileNamearguments may be coded as an arbitrary sequence of printable characters, or as a Text-Literal; use the Text-Literalform if the FileNameis to contain embedded spaces or other special characters.
If path information is included in the FileName, you can separate the individual directory names with either the back slash (\) or the forward slash (/) and they will be treated identically by the assembler.
FileName:
FileName-Text
Text-Literal
FileName-Text:
FileName-Character
FileName-Text FileName-Character
FileName-Character.:
any printable character except blank (ASCII 32)
Related Information
Syntax
FileName:
FileName-Text
Text-Literal
FileName-Text:
FileName-Character
FileName-Text FileName-Character
FileName-Character.:
any printable character except blank (ASCII 32)
Description
FileNamearguments may be coded as an arbitrary sequence of printable characters, or as a Text-Literal; use the Text-Literalform if the FileNameis to contain embedded spaces or other special characters.
If path information is included in the FileName, you can separate the individual directory names with either the back slash (\) or the forward slash (/) and they will be treated identically by the assembler.
Examples
INCLUDE < inc \ macros . inc > INCLUDELIB os2386 . lib
Comments
Commentsare language elements that have significance only to the programmer and not to the assembler. Comments are effectively removed from the input stream during the text preprocessing phase.
There are two classes of comments recognized by ALP:
�Comments that start with a character sequence and continue to the end of the line (EndOfLine-Comment)
�Comments that start with a character sequence and continue until the occurrence of another character sequence (Block-Comment). See the COMMENTdirective for a description of Block-Comments.
There are two types of EndOfLine-Comments:
Macro-Comment
Macro-Comments(beginning with two semicolons) do not appear in the listing output even when the .LALL directive is used. Use of Macro-Commentscan significantly reduce the amount of memory workspace used by the definition of a macro. As a macro definition is read, Macro-Commentsare discarded and not entered into the macro definition, whereas NonMacro-Commentsare treated as normal text and are retained.
NonMacro-Comment
NonMacro-Comment(beginning with a single semicolon) are preserved in macro definitions and appear in the listing output during macro expansions.
Comment:
EndOfLine-Comment
Block-Comment
EndOfLine-Comment:
NonMacro-Comment
Macro-Comment
NonMacro-Comment:
;Char-Sequence
Macro-Comment:
;;Char-Sequence
Char-Sequence:
any printable character
Char-Sequenceany printable character
Block-Comment:
See the COMMENTdirective
Related Information
Syntax
Comment:
EndOfLine-Comment
Block-Comment
EndOfLine-Comment:
NonMacro-Comment
Macro-Comment
NonMacro-Comment:
;Char-Sequence
Macro-Comment:
;;Char-Sequence
Char-Sequence:
any printable character
Char-Sequenceany printable character
Block-Comment:
See the COMMENTdirective
Description
Commentsare language elements that have significance only to the programmer and not to the assembler. Comments are effectively removed from the input stream during the text preprocessing phase.
There are two classes of comments recognized by ALP:
�Comments that start with a character sequence and continue to the end of the line (EndOfLine-Comment)
�Comments that start with a character sequence and continue until the occurrence of another character sequence (Block-Comment). See the COMMENTdirective for a description of Block-Comments.
There are two types of EndOfLine-Comments:
Macro-Comment
Macro-Comments(beginning with two semicolons) do not appear in the listing output even when the .LALL directive is used. Use of Macro-Commentscan significantly reduce the amount of memory workspace used by the definition of a macro. As a macro definition is read, Macro-Commentsare discarded and not entered into the macro definition, whereas NonMacro-Commentsare treated as normal text and are retained.
NonMacro-Comment
NonMacro-Comment(beginning with a single semicolon) are preserved in macro definitions and appear in the listing output during macro expansions.
Examples
The following are examples of EndOfLine-Comments:
; Comments may be on a line all by themselves . They can be empty . . . ; ; They don ' t have to start in the first column BumpCount MACRO Amount ; They can appear to the right of statements Count = Count + Amount ; This appears in macro expansions $ Total = $ Total + Amount ; ; This does not , discarded during definition ENDM
Text Arguments
Many preprocessing directives operate on sequences of raw text characters called Text-Arguments. A Text-Argumentmay be specified using any one of several methods:
�Specifying the text directly using a raw Text-Literal.
�Using the Text-Expansion-Operatorto convert a numeric expression to its text representation.
�Using a Text-EquateNamein those contexts where a Text-Argumentis expected. In this case the preprocessor will automatically resolve the Text-EquateNameand use its value as the Text-Argument.
Text-Argument:
Text-Literal
%Expression
Text-EquateName
Description
Many preprocessing directives operate on sequences of raw text characters called Text-Arguments. A Text-Argumentmay be specified using any one of several methods:
�Specifying the text directly using a raw Text-Literal.
�Using the Text-Expansion-Operatorto convert a numeric expression to its text representation.
�Using a Text-EquateNamein those contexts where a Text-Argumentis expected. In this case the preprocessor will automatically resolve the Text-EquateNameand use its value as the Text-Argument.
Syntax
Text-Argument:
Text-Literal
%Expression
Text-EquateName
Conditional Assembly Directives
At assembly time, ALP evaluates conditional assembly directives, assembling if the conditions are true. You can use conditional assembly directives when you want to test for a specified condition and assemble a block of statements if the condition is true. The IFxxand ENDIFdirectives enclose the statements to be considered for conditional assembly. The optional ELSEIFxxand ELSEblocks follow the IFxxdirective. There are many forms of the IFxxand ELSEIFxxdirectives.
This section describes the following conditional assembly directives:
IF
IFB
IFDEF
IFDIF
IFDIFI
IFE
IFIDN
IFIDNI
IFNB
IFNDEF
IF1
IF2
ELSE
ENDIF
IFxx (Begin Primary Conditional Block)
You can use each IFxxconditional directive with the ELSExx, ELSEand ENDIFdirectives to provide the statements to be considered for conditional assembly. ALP assembles the statements following the IFxxdirective only if this condition is true.
Syntax
IFxx operand . . . [ ELSEIFxx ] ( optional ) . . . [ ELSE ] ( optional ) . . . ENDIF
Remarks
The following directives are members of the IFxxfamily:
�IF
�IFB
�IFDEF
�IFDIF
�IFDIFI
�IFE
�IFIDN
�IFIDNI
�IFNB
�IFNDEF
�IF1
�IF2
You can nest the conditional directives to any level. They are not limited to use within a macro. The assembler must know any operand to a conditional on pass one to avoid errors and incorrect evaluation.
IF (If Expression is True)
IFstarts a conditional assembly statement, which is ended by the corresponding ENDIFconditional assembly directive. Each IFdirective must be ended by a matching ENDIFdirective.
Syntax
IF Expression . . . [ ELSEIFxx ] ( optional ) . . . [ ELSE ] ( optional ) . . . ENDIF
Remarks
If the IFxxconditional assembly statement is not ended by an ENDIFdirective, an unterminated conditionalmessage is produced by the assembler . An ENDIFwithout a matching IFcauses an error. ENDIFdoes not have an operand.
Note:The conditional directives can be nested to any level. They are not limited to use within a macro. Any operand to a conditional must be known on pass 1 to avoid errors and incorrect evaluation.
Example
IF debug EXTERN dump : FAR EXTERN trace : FAR EXTERN breakpoint : FAR ENDIF
IFB (If Argument is Blank)
This is true if Text-Argumentis blank (contains no characters).
Syntax
IFB Text - Argument
Remarks
A Text-Argumentmust be specified, the contents of which are checked for the presence of characters. An error is generated if a Text-Argumentis not supplied.
IFDEF (If Identifier is Defined)
This is true if Identifierhas been defined as a label, variable, or symbol .
Syntax
IFDEF Identifier
IFDIF (If Arguments Are Different)
This is true if Text-Argument-1and Text-Argument-2are different in a case -sensitive comparison.
Syntax
IFDIF Text - Argument - 1 , Text - Argument - 2
Remarks
Both Text-Argumentarguments must be specified. An error is generated if a either argument is not supplied.
Example
In the following example:
IFDIF < EAGLES > , < Eagles > value = 1 ENDIF
the condition would be true; the arguments are different because they are compared with a case-sensitive algorithm.
IFDIFI (If Arguments Are Spelled Differently)
This is true if Text-Argument-1and Text-Argument-2are different in a case -insensitive comparison.
Syntax
IFDIFI Text - Argument - 1 , Text - Argument - 2
Remarks
Both Text-Argumentarguments must be specified. An error is generated if a either argument is not supplied.
Example
In the following example:
IFDIFI < EAGLES > , < Eagles > value = 1 ENDIF
the condition would be false; the arguments are not different because they are compared using a case-insensitive algorithm.
IFE (If Expression is Not True)
This is true if expressionis 0.
Syntax
IFE Expression
IFIDN (If Arguments Are Identical)
This is true if Text-Argument-1and Text-Argument-2are identical in a case -sensitive comparison.
Syntax
IFIDN Text - Argument - 1 , Text - Argument - 2
Remarks
Both Text-Argumentarguments must be specified. An error is generated if a either argument is not supplied.
Example
In the following example:
IFIDN < EAGLES > , < Eagles > value = 1 ENDIF
the condition would be false; the arguments are not identical because they are compared using a case-insensitive algorithm.
IFIDNI (If Arguments Are Spelled Identically)
This is true if Text-Argument-1and Text-Argument-2are identical in a case -insensitive comparison.
Syntax
IFIDNI Text - Argument - 1 , Text - Argument - 2
Remarks
Both Text-Argumentarguments must be specified. An error is generated if a either argument is not supplied.
Example
In the following example:
IFIDNI < EAGLES > , < Eagles > value = 1 ENDIF
the condition would be true; the arguments are identical because they are compared using a case-insensitive algorithm.
IFNB (If Argument is Not Blank)
This is true if Text-Argumentis not blank (characters are present).
Syntax
IFNB Text - Argument
Remarks
A Text-Argumentmust be specified, the contents of which are checked for the presence of characters. An error is generated if a Text-Argumentis not supplied.
IFNDEF (If Identifier is Not Defined)
This is true if symbolhas not yet been defined as a label, variable, or symbol.
Syntax
IFNDEF symbol
IF1 (If Assembling On Pass 1)
This is true on pass one.
Syntax
IF1
Remarks
IF1does not have an operand.
IF2 (If Assembling On Pass 2)
This is true on pass two.
Syntax
IF2
Remarks
IF2does not have an operand.
ELSEIFxx/ELSE (Begin Alternate Conditional Block)
Each conditional directive can be used with the ELSEdirective to provide the statements to be considered for conditional assembly. The ELSEdirective allows the assembly of the statements following it when the IFxxcondition or intervening ELSEIFxxconditions are false.
Syntax
IFxx . . . [ ELSEIFxx ] ( optional ) . . . [ ELSE ] ( optional ) . . . ENDIF
Remarks
There is a corresponding ELSEIFxxdirective to match all forms of the IFxxfamily of directives:
�ELSEIF
�ELSEIFB
�ELSEIFDEF
�ELSEIFDIF
�ELSEIFDIFI
�ELSEIFE
�ELSEIFIDN
�ELSEIFIDNI
�ELSEIFNB
�ELSEIFNDEF
�ELSEIF1
�ELSEIF2
For information about the meaning of the conditional tests performed by the ELSEIFxxdirectives, refer to the definitions for the corresponding IFxxdirectives.
Any number of ELSEIFxxblocks may be used within a given IFxxstatement. Only one ELSEblock is permitted for a given IFxx. A conditional directive with more than one ELSEor an ELSEwithout a conditional directive causes an error. ELSEdoes not have an operand.
Note:The conditional directives can be nested to any level. They are not limited to use within a macro. Any operand to a conditional must be known on pass 1 to avoid errors and incorrect evaluation.
Example
IF DEFBUF BUF DB 100 DUP ( 0 ) ELSE EXTERN BUF : BYTE ENDIF
ENDIF (End a Conditional Assembly Statement)
ENDIFends the conditional assembly statement begun by the corresponding IFxxconditional assembly directive. Each IFxxdirective must be ended by a matching ENDIFdirective.
Syntax
IFxx . . . [ ELSEIFxx ] ( optional ) . . . [ ELSE ] ( optional ) . . . ENDIF
Remarks
If the IFxxconditional assembly statement is not ended by an ENDIFdirective, an unterminated conditionalmessage is produced by the assembler . An ENDIFwithout a matching IFxxcauses an error. ENDIFdoes not have an operand.
Note:The conditional directives can be nested to any level. They are not limited to use within a macro. Any operand to a conditional must be known on pass 1 to avoid errors and incorrect evaluation.
Example
IF debug EXTERN dump : FAR EXTERN trace : FAR EXTERN breakpoint : FAR ENDIF
Text Equate Directives
A Text Equateis a symbolic name you give to a series of characters. Text equates are used to expand text within a source statement. The directives described in this section create and manipulate text equates.
EQU
CATSTR
INSTR
SIZESTR
SUBSTR
CATSTR (Concatenate Strings)
CATSTRconcatenates a list of text values specified by stringinto a single text value and assigns it to Name.
Syntax
Name CATSTR string [ , string ] . . .
EQU Directive (Assign Text to a Symbolic Constant)
The EQUdirective assigns the contents of a text literal to Name.
Syntax
Name EQU Text - Literal
Remarks
The value of the Text-Literalis assigned to the Nameentry. In normal contexts, subsequent references to Namewill cause the preprocessor to replace Namewith the value specified by the Text-Literalentry. This is a simple text substitution operation.
The Nameentry is a globally-scoped Identifierthat is converted to a Text- EquateName. The Namecannot have been previously defined as a different Identifier-Type. However, the Nameentry can be redefined as many times as desired with different values for the Text-Literalentry.
Example
A EQU < BP + > ; explicit text literal , A is a text equate A EQU < 3 > ; redefinition of A with different value
INSTR (Search In String For Value)
INSTRsearches a specified Stringfor an occurrence of a given Sub-Stringand assigns its position (1-based) to Name. The search is case sensitive. Startis the position in Stringto start the search for Sub-String. If Startis not given, it is assumed to be 1 (the start of the string). If Sub-Stringis not found, the position assigned to Nameis 0.
Syntax
Name INSTR [ Start , ] String , Sub - String
Remarks
INSTRassigns the position value to a name as if it were a numeric equate.
Example
pos INSTR < person > , < son >
SIZESTR (Return Size Of String)
Assigns the number of characters given by the Text-Argumentto Name.
Syntax
Name SIZESTR Text - Argument
SUBSTR (Extract a Sub-string From a String)
Assigns a substring of Text-Argumentstarting at Positionto the symbol given by Name..
Syntax
Name SUBSTR Text - Argument , Position [ , Length ]
Remarks
The Positionparameter indicates the starting character of the substring to extract from the Text-Argument, and must be 1 or greater. If specified, the Lengthparameter indicates how many characters are desired, otherwise the remainder of the string is extracted.
Macro Directives
A macro procedure or function, which is comprised of one or more statements .
Macro processing is text processing that is done sequentially at assembly time. By the end of assembly, ALP expands all macros and assembles the resulting text into object code.
This section describes the following types of macros:
�Macro procedures, which expand to one or more complete statements and can optionally take parameters
�Repeat blocks, which generate a group of statements a specified number of times or until a condition becomes true
This section describes the following macro directives:
ENDM
EXITM
FOR/IRP
FORC/IRPC
LOCAL
MACRO
PURGE
REPEAT/REPT
ENDM (End Current Macro Definition)
End each MACRO, REPEAT/REPT, FOR/IRP, and FORC/IRPCdirective with the ENDMdirective.
Syntax
ENDM
Remarks
If the ENDMdirective is not used with the MACRO, REPEAT/REPT, FOR/IRP, and FORC/IRPCdirectives, an error occurs. An unmatched ENDMalso causes an error.
If the assembler produces an error message stating that it found the end-of -file on the source and cannot find an ENDstatement when there was an END, the likely cause is a missing ENDMor ENDIF statement. Without ENDM, the assembler treats the rest of the source as part of the MACROdefinition.
Note:The name fieldis not allowed. Do not confuse the ENDMdirective with other ending directives that do require the name of the block being ended, such as ENDP or ENDS.
Example
addup MACRO ad1 , ad2 , ad3 MOV AX , ad1 ; ; first parameter in AX ADD AX , ad2 ; ; add next two parameters ADD AX , ad3 ; ; leave sum in AX ENDM
EXITM (End Current Macro Expansion)
Use the EXITMdirective when a block contains a directive that tests for some condition and you want to end the current macro expansion when the test proves that the remainder of the expansion is not required. When an EXITMdirective is run, the expansion is stopped immediately, and any remaining expansion or repetition is not produced.
Syntax
EXITM
Remarks
Only the block containing the EXITMdirective is ended; outer levels of a nested macro expansion continue unaffected.
EXITMis executed at macro expansion time and is not a substitute for the ENDMdirective, which marks the end of the macro body and is recognized at macro definition time.
Example
DSEG SEGMENT . . . SYM = 0 REPEAT 16 ; ; Check for paragraph boundary IF ( $ - DSEG ) MOD 16 EQ 0 EXITM ; ; quit if padded to boundary ENDIF SYM = SYM + 1 DB SYM ; ; produce numbered padding ENDM
FOR/IRP (Iterative Macro Expansion Using List of Arguments)
The FORdirective, used in combination with the ENDMdirective, designates a block of statements to be repeated, once for each argument in the list enclosed by angle brackets. Each repetition substitutes the next item in the <Argument-List> entry for every occurrence of Parameterin the block.
Syntax
FOR Parameter , < Argument - List > . . . ENDM
Remarks
The obsolete spelling for the FORdirective is IRP.
You must enclose the <Argument-List> entry in angle brackets. It has the following format:
< [ Argument [ , Argument . . . ] ] >
If an empty (<>) Argumentis found in <Argument-List>, the Parametername is replaced by a null value. If the argument list is empty, the FORdirective is ignored and no statements are copied. The assembler processes the block once for each Argumentin the <Argument-List>, replacing each occurrence of Parameterin the macro body with the current Argumentvalue.
The FOR/IRP-ENDMblock does not have to be within a macro definition.
Example
In this example, the assembler produces the code DB1 through DB10.
FOR X , < 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 > DB X ENDM
In the next example:
FOR ARGUMENT , < " first line " , 13 , 10 , " second line " , 13 , 10 > DB ARGUMENT ENDM
The assembler produces the code:
DB " first line " DB 13 DB 10 DB " second line " DB 13 DB 10
FORC/IRPC (Iterative Macro Expansion Using List of Characters)
The assembler repeats the statements in the block once for each character in the string. Each repetition substitutes the next character in the string for every occurrence of Parameterin the block.
Syntax
FORC Parameter , String ( or < String > ) . . . ENDM
Remarks
The obsolete spelling for the FORCdirective is IRPC.
The FORCdirective is similar to the FOR/IRPdirective except that a Stringis used instead of <Argument-List>, and the angle brackets around the string are optional. The string should be enclosed with angle brackets (<> ) if it contains spaces, commas, or other separating characters.
The FORC/IRPC-ENDMblock does not have to be within a macro definition.
Example
In this example, the assembler produces the code DB1 through DB8:
FORC X , 12345678 DB X ENDM
LOCAL (Identify Names Local to a Macro Definition)
The LOCALdirective is used inside the body of a macro definition, and provides a method of automatically generating unique assembler labels each time the macro is expanded. The names appearing in the argument list of the LOCALdirective are known only to the enclosing macro, and each time they are referenced during a macro expansion a unique symbol is created. This prevents the assembler from issuing duplicate definition errors when the macro is expanded more than once and symbols contained therein are being used to create assembler labels.
Syntax
LOCAL Name [ , Name . . . . ]
Remarks
The LOCALdirective is recognized only within the body of a macro given by a MACRO, FOR/IRP, FORC/IRPC, or REPEAT/REPTdefinition. The symbols created by the preprocessor are of the form ??nnnn, where nnnnis a hexadecimal number in the range 0000 through FFFF. You must avoid using identifiers of this form for your own purposes, because doing so can cause duplicate definition errors.
To insure that they have the proper effect, LOCALstatements should appear in the body of the macro before any other directives are used. It is acceptable for blank lines or comments to precede any LOCALstatements.
You can use multiple LOCALstatements if the argument list is too long to fit on one line, or if you want a vertical list of LOCALsymbols.
Example
DISPLAY MACRO TT ; Blank lines and comments are ok here LOCAL AGAIN ; ; DOS macro to display message addressed by BX TT times MOV CX , TT MOV AH , 9 MOV DX , BX ; Generate a unique label for AGAIN AGAIN : INT 21H LOOP AGAIN ENDM
MACRO (Assign a Body of Text to a Name)
This directive produces a given sequence of statements from various places in your program, even though different parameters may be required each time you call the sequence.
Macro processing consists of two separate and distinct phases: Macro Definitionand Macro Expansion.
Macro Definition
A macro definition consists of three essential parts:
�The MACROdirective, defining the Nameand the Parameter-List
�The body of the macro, containing the prototypes of statements to produce when you invoke the macro for expansion.
�The ENDMdirective, ending the definition of the macro.
Syntax
Name MACRO [ Parameter [ , Parameter . . . ] ] . . . ENDM
Remarks
The Namefield must be a valid preprocessor identifier and specifies the symbolic name that the user will refer to when invoking the macro for expansion. If Nameis already defined, it must be that of a previous macro definition, otherwise an error message is issued. Macros may be redefined to have a different Parameter-Lists or macro body text; doing so causes the previous definition to be lost.
The optional Parameter-Listis the complete comma-separated list of all Parametervaluess given in the macro definition statement. A parameter must be a valid symbol name according to the rules for naming preprocessor and assembler identifiers. Each parameter becomes a symbol that is local to the macro being defined and is recognized during macro expansion prior to searching the global name space. Thus, macro parameters need not have names unique from identifiers defined elsewhere in the program.
Macro Expansion
To expand the macro, the macro Name(defined in the Namefield of the MACROdefinition statement) is coded as you would any other assembler directive, followed by the list of arguments (if any) that you want to pass to the macro.
Syntax
Name [ Argument [ , Argument . . . ] ]
Remarks
The Namefield must be the name of a macro defined previously with a MACROdirective.
Each Argumentfield denotes a text value that you want to pass to the macro . The relative positions of the elements are important, because each Argumentis associated in left-to-right fashion with the corresponding Parameteras defined in the Parameter-Listduring the macro definition.
The number of Argumententries given when the macro is invoked need not be the same as the number of Parameterentries. If you pass extra Arguments to the macro, they are ignored; if too few are supplied, empty text values are associated with the remaining Parameters. You may also associate an empty text value with a Parameterby passing an explicitly empty text literal <> as an Argument.
Commas are normally used to separate arguments, although blanks or tabs are also considered to be argument separators. For this reason, any argument that must contain an argument separator character (commas, blanks, or tabs) should be enclosed in angle brackets <>. For example:
PUSHVEC MACRO PARM1 , PARM2 MOV AX , PARM1 PUSH AX MOV AX , PARM2 PUSH AX ENDM . . . PUSHVEC DS , < OFFSET VARNAME > ; PUSH DWORD VECTOR OF VARNAME ONTO STACK
You can also use angle brackets to produce variable lengths of results. For example:
STRING MACRO NUMBERS DB NUMBERS ENDM . . . STRING < 1 , 2 , 3 , 4 > ; PRODUCE 4 BYTES OF INTEGER NUMBERS
Remarks
Each time a macro is invoked (expanded) by specifying its name, the preprocessor emits the statements contained in the body of the macro and passes them to the assembler for processing. During the expansion process, any replacement parameters encountered in the macro body (as named in the Parameter-Listof the macro definition) are replaced with the corresponding Argument(if any) passed through the argument-listat the time the macro was invoked.
Example
GEN MACRO XX , YY , ZZ MOV AX , XX ADD AX , YY MOV ZZ , AX ENDM
When the call is made, for example:
GEN ED , KISER , SUM
The assembler produces the following code:
MOV AX , ED ADD AX , KISER MOV SUM , AX
PURGE (Remove Macro Definition)
The PURGEdirective deletes the definition of a specified macro entry, letting you reuse space.
Syntax
PURGE Macro - Name [ , . . . ]
Remarks
It is not necessary to purge a macro before redefining it. You may use PURGEto recover memory during assembly by deleting the contents of unreferenced macros. An Out of Memorycondition can occur if a large, general-purpose macro library is included.
Example
The directive:
PURGE MACRONAME
performs the same function as redefining the macro with no contents, as in:
MACRONAME MACRO ENDM
In the following example, assume that MAC1 is a macro included in MACRO.LIB :
INCLUDE MACRO . LIB PURGE MAC1 MAC1 ; Calls the purged macro ; but produces nothing
REPEAT/REPT (Iterative Macro Expansion Using a Count Expression)
REPEATspecifies the number of times to generate the statements inside the macro.
Syntax
REPEAT Expression Statements ENDM
Remarks
The Expressionfield must evaluate to an Absolute-ExpressionType(it cannot contain forward references). Because the repeat block will be expanded at assembler time, the number of iterations must be known then.
ECHO Directive (Display Message on Standard Output Device)
The ECHOdirective displays progress through a long assembly or displays the value of conditional assembly parameters.
Syntax
ECHO Text
Remarks
The assembler lists the Textentry on the standard output device during assembly when the assembler encounters the ECHOdirective.
ECHOis not available under MASM 5.10 emulation; you must use %OUT,which is the obsolete spelling for the ECHOdirective.
Example
Example 1:
IF IBM ECHO IBM VERSION ENDIF IF2 ECHO STARTING SECOND PASS . . . ENDIF
Example 2:
INNER MACRO TEXT , VAL ECHO TEXT VAL ENDM . . . HERE = $ - CSEG INNER < CURRENT LOCATION > , % HERE
INCLUDE Directive (Insert File Contents into Input Stream)
The INCLUDEdirective "stacks" the current source file and begins reading tokens from the source file given by the FileNameargument. If you use the INCLUDEdirective, you need not repeat a sequence of statements that are common to several source files.
Syntax
INCLUDE FileName
Remarks
The assembler uses the following search order when attempting to open the INCLUDEfile:
1.If the FileNameargument contains a fully qualified path name (one that begins with a back slash or forward slash), then the assembler attempts to open the file exactly as specified, and no other search is performed if the file is not found.
2.If the FileNamebegins with a relative path name or contains no path information, the assembler begins searching for the INCLUDEfile by looking in the directory of the source file that issued the INCLUDEdirective.
3.The assembler searches for FileNamein the list of directories given by any -Fdior -Ioptions found on the command line.
4.The assembler searches for FileNamein the list of directories given by the <BaseEXE>_INCLUDEenvironment variable.
5.The assembler searches for FileNamein the list of directories given by the INCLUDEenvironment variable.
6.Lastly, the assembler searches for FileNamein the current directory. If the named file is not found, the assembler issues a fatal error message and the assembler is ended.
In no case does the assembler strip relative path information from the FileNamewhen performing search steps 2 through 6.
When the file named in the INCLUDEdirective is located, the assembler opens it and assembles all of the statements contained therein until the end of the file is reached. The file is then closed and assembler resumes in the original module at the line following the INCLUDEdirective.
An INCLUDEfile should not contain an ENDassembler directive to denote the end of the included module; the assembler closes the included module when its physical end of file is reached.
INCLUDEfiles may be nested to any reasonable level, and is limited only by the operating system's ability to provide the necessary resources.
Example
INCLUDE OS2 . INC
COMMENT Directive (Program Information Block)
COMMENTlets you enter comments about your program without having to enter semicolons (;) for each line.
Syntax
COMMENT Delimiter Text Delimiter
Remarks
The first non-blank character after COMMENTis the first delimiter. The COMMENTdirective causes the assembler to treat all Textbetween Delimiterand Delimiteras a comment. The text must not contain the delimiter character. This directive is used for multiple-line comments. A COMMENTdefined in the body of a macro does not appear unless .LALLis requested.
Example
COMMENT * You can enter as many lines of text between the delimiters . . . as you need to describe your program . *
Assembler Directives
This section describes the various types of ALP directives:
/-----------------------------------------------------------------------------\ |Type |Function |Directives | |-------------------------+-------------------------+-------------------------| |Conditional error |Debugs programs and |.ERR | | |checks for assembly-time |.ERR1 | | |errors. |.ERR2 | | | |.ERRDEF | | | |.ERRNDEF | | | |.ERRE | | | |.ERRNZ | | | |.ERRB | | | |.ERRDIF | | | |.ERRDIFI | | | |.ERRIDN | | | |.ERRIDNI | | | |.ERRNB | |-------------------------+-------------------------+-------------------------| |Data allocation |Allows you to create and |BYTE | | |initialize variables for |DB | | |use within your program. |DD | | | |DF | | | |DQ | | | |DT | | | |DW | | | |DWORD | | | |FWORD | | | |QWORD | | | |REAL4 | | | |REAL8 | | | |REAL10 | | | |SBYTE | | | |SDWORD | | | |SWORD | | | |TBYTE | | | |WORD | |-------------------------+-------------------------+-------------------------| |Intermodule linkage |Simplifies data sharing |COMM | | |and a provides a |END | | |high-level interface to |EXTERN/EXTRN | | |multiple-module |EXTERNDEF | | |programming. |INCLUDELIB | | | |NAME | | | |PUBLIC | |-------------------------+-------------------------+-------------------------| |Listing control |Controls the assembler |%BIN | | |listing of your source |.CREF | | |file. |.LALL | | | |.LIST | | | |.LISTALL | | | |.LISTIF | | | |.LISTMACRO | | | |.LISTMACROALL | | | |.NOCREF | | | |.NOLIST | | | |.NOLISTIF | | | |.NOLISTMACRO | | | |PAGE | | | |.SALL | | | |.SFCOND | | | |SUBTITLE | | | |SUBTTL | | | |.TFCOND | | | |TITLE | | | |.XALL | | | |.XCREF | | | |.XLIST | |-------------------------+-------------------------+-------------------------| |Procedure control |Allows you to organize |PROC | | |your code into |LOCAL | | |procedures. |ENDP | |-------------------------+-------------------------+-------------------------| |Processor control |Selects processors and |.186 | | |coprocessors. |.286 | | | |.286P | | | |.287 | | | |.386 | | | |.386P | | | |.387 | | | |.486 | | | |.486P | | | |.586 | | | |.586P | | | |.686 | | | |.686P | | | |.8086 | | | |.8087 | | | |.MMX | | | |.NOMMX | |-------------------------+-------------------------+-------------------------| |Segments |Creates and manages |ALIGN | | |segments. |.ALPHA | | | |.CODE | | | |.CONST | | | |.DATA | | | |.DATA? | | | |DOSSEG | | | |.DOSSEG | | | |ENDS | | | |EVEN | | | |.FARDATA | | | |.FARDATA? | | | |GROUP | | | |.MODEL | | | |ORG | | | |SEGMENT | | | |.SEQ | | | |.STACK | |-------------------------+-------------------------+-------------------------| |Type definition |Allows the creation of |RECORD | | |complex user-defined data|STRUC | | |types. |STRUCT | | | |TYPEDEF | | | |UNION | |-------------------------+-------------------------+-------------------------| |Miscellaneous |Provides miscellaneous |= | | |functions. |.ABORT | | | |ASSUME | | | |EQU | | | |LABEL | | | |OPTION | | | |.RADIX | \-----------------------------------------------------------------------------/
Conditional Error Control
Use conditional error control directives to debug programs and check for assembly-time errors. If you insert a conditional assembly directive in your code, you can test assembly-time conditions at that point. You can also test for boundary conditions in macros by using conditional error control directives.
Errors generated by conditional error control directives cause ALP to return a nonzero return code. If a severe error is detected during assembly , ALP does not generate the object module.
This section describes the following conditional error control directives:
.ERR
.ERR1
.ERR2
.ERRB
.ERRDEF
.ERRDIF
.ERRDIFI
.ERRE
.ERRIDN
.ERRIDNI
.ERRNB
.ERRNDEF
.ERRNZ
.ERR/.ERR1/.ERR2 (Force Assembly Error Condition)
The .ERR, .ERR1, and .ERR2directives cause errors at the points at which they occur in the source file.
Syntax
. ERR or . ERR1 or . ERR2
Remarks
The .ERRdirective causes an error regardless of the pass. .ERR1causes an error on the first pass only. .ERR2causes an error on the second pass only. If you use the -Lp:1option to request a first pass listing, the . ERR1error message appears on the screen and in the listing file. Like other error conditions occurring during pass one, the error generated by . ERR1does not cause the assembly to fail.
Example
This example ensures that you define either the DOS or the OS2 symbol. If you define neither, the assembler assembles the nested ELSEcondition and produces an error message. The .ERRdirective causes an error on each pass.
IFDEF DOS . . . ELSE IFDEF OS2 . . . ELSE . ERR ENDIF ENDIF
.ERRB/.ERRNB (Error if Argument Blank/Non-Blank)
The .ERRBand .ERRNBdirectives test the given Text-Argument.
Syntax
. ERRB Text - Argument or . ERRNB Text - Argument
Remarks
If Text-Argumentis blank, the .ERRBdirective produces an error. If Text- Argumentis not blank, .ERRNBproduces an error.
You can test for the existence of parameters by using these directives within macros.
Example
In this example, the directives ensure that only one argument is passed to the macro. If no argument is passed to the macro, the .ERRBdirective produces an error. If more than one argument is passed, the .ERRNBdirective produces an error.
WORK MACRO REALARG , TESTARG . ERRB < REALARG > ; ; Error if no parameters . ERRNB < TESTARG > ; ; Error if more than one parameter . . . ENDM
.ERRDEF/.ERRNDEF (Error if Symbol Defined/Not Defined)
The .ERRDEFand .ERRNDEFdirectives test whether a symbol has been defined.
Syntax
. ERRDEF Identifier or . ERRNDEF Identifier
Remarks
If Identifieris defined as a label, a variable, or a symbol, the .ERRDEFdirective produces an error. If you have not defined Identifier, .ERRNDEFproduces an error. When Identifieris a forward reference, the assembler considers it undefined on the first pass and defined on the second pass.
Example
In this example, .ERRDEFensures that SYMBOLis not defined before entering the blocks, and .ERRNDEFensures that you defined SYMBOLsomewhere within the blocks.
. ERRDEF SYMBOL IFDEF CONFIG1 . . SYMBOL EQU 0 . ENDIF IFDEF CONFIG2 . . SYMBOL EQU 1 . ENDIF . ERRNDEF SYMBOL
.ERRDIF/.ERRDIFI (Error if Arguments are Different)
The .ERRDIFand .ERRDIFIdirectives generate an assembler error if the two Text-Argumentsare different.
Syntax
. ERRDIF Text - Argument - 1 , Text - Argument - 2 or . ERRDIFI Text - Argument - 1 , Text - Argument - 2
Remarks
The .ERRDIFdirective performs a case-sensitive comparision, and the . ERRDIFIdirective performs a case-insensitive comparision.
Example
In this example, a check is made to verify that the currently opened segment is _TEXT. This helps to insure that the macro is used only from within the default near code segment, and not from a program with a memory model that uses far code pointers (MEDIUM, LARGE, or HUGE).
RETURN MACRO ; ; Use the expansion operator ( % ) to resolve @ CurSeg equate % . errdif < _ TEXT > , < @ CurSeg > ; ; Must be in near . CODE segment RETN ; ; Force a near return ENDM
.ERRE/.ERRNZ (Error if Expression False/True)
The .ERREand .ERRNZdirectives test the value of an Expression.
Syntax
. ERRE Expression or . ERRNZ Expression
Remarks
If the Expressionevaluates to be false (zero), the .ERREdirective produces an error. If the Expressionevaluates to be true (not zero), the .ERRNZdirective produces an error. The Expressionmust evaluate to an absolute value and cannot contain forward references.
Example
In this example, .ERREchecks the boundaries of a parameter that the program passes to the macro BUFFER. If count is less than or equal to 128, the expression that the directive tests is true (not zero) and the directive produces no error. If COUNTis greater than 128, the expression is false (zero) and the directive produces an error.
BUFFER MACRO COUNT , BNAME . ERRE COUNT LE 128 BNAME DB COUNT DUP ( 0 ) ; ; Reserve memory , but no more than 128 bytes ENDM BUFFER 128 , BUF1 ; Data reserved - no error BUFFER 129 , BUF2 ; Error produced
.ERRIDN/.ERRIDNI (Error if Arguments are Identical)
The .ERRIDNand .ERRIDNIdirectives generate an assembly error if the two Text-Argumentsare identical.
Syntax
. ERRIDN Text - Argument - 1 , Text - Argument - 2 or . ERRIDNI Text - Argument - 1 , Text - Argument - 2
Remarks
The .ERRIDNdirective performs a case-sensitive comparision, and the . ERRIDNIdirective performs a case-insensitive comparision.
Example
In this example, .ERRIDNprotects against the passing the AX register as the second parameter, because the macro does not work if this happens. This example uses the .ERRIDNIdirective since the macro needs to check for all possible spellings of the AX register.
ADDEM MACRO AD1 , AD2 , SUM . ERRIDNI < ax > , < AD2 > ; ; ERROR IF AD2 is ax MOV AX , AD1 ; ; Would overwrite if AD2 were AX ADD AX , AD2 MOV SUM , AX ; ; SUM must be register or memory ENDM
Data Allocation
Data allocation statements allow you to reserve storage for your program data. To initiate a data allocation statement, an Old-Style-Allocation- Directivemay be used, but in modes other than M510it is preferable to use a Scalar-TypeNameor UserDefined-TypeName, which the assembler treats as a pseudo-directive. To introduce consistency into the descriptions, all such variations will be referred to as the Allocation-TypeName.
The Allocation-TypeNamethat you select determines the data-type of the allocated storage. An optional symbolic name may be associated with the storage, and the storage may also be initialized with specific values if so desired.
Syntax
[ Name ] Allocation - TypeName Initializer [ , Initializer . . . ]
Allocation-TypeName:
Old-Style-Allocation-Directive
Scalar-TypeName
Record-TypeName
Structure-TypeName
Union-TypeName
Typedef-TypeName
Old-Style-Allocation-Directive:one of
DB DW DD DF DQ DT
Remarks
The various fields of the data allocation statement are described as follows:
NameIf the Nameentry is present, it must be specified as a valid Identifierunique to the scope in which it appears. If the allocation statement is assembled into an open segment, the assembler converts the identifier to a Data-LabelNameto allow referencing the storage by a symbolic variable name. If the allocation statement is assembled into the body of a STRUCTor UNIONtype definition, then the assembler converts the identifier to a Structure-FieldNameor Union-FieldName.
Allocation-TypeNameIf the Allocation-TypeNameis specified as a Typedef- TypeName, the assembler resolvesit to its underlying data type to determine what type of initialization is to be performed.
If the Allocation-TypeNameentry resolves to a Scalar-TypeNameor a pointer to some other type, then the Initializerfield must be specified using an expression syntax that can be resolved to a Scalar-Initializer- ExpressionType. See the following section on Initialization of Scalar Typesfor a full description of this topic.
If the Allocation-TypeNameentry resolves to a Record-TypeName, Structure- TypeName, or Union-TypeName, then the Initializerfield must be specified using the Compound-Initializersyntax. See the following section on Initialization of Aggregate Typesfor a full description of this topic.
If the Allocation-TypeNameentry resolves to an array of any other type, then the Initializerfield must be specified using the Compound-Initializersyntax. See the following section on Initialization of Vector Typesfor a full description of this topic.
InitializerEach Initializerentry is an Expressionthat must resolve to an Initializer-ExpressionTypeappropriate for the type of data described by the Allocation-TypeNamefield.
Each Initializerentry may also be duplicated by making it the operand of a Duplicative-Expression. When assembling in ALPmode however, the DUPoperator is considered obsolete and its use is discouraged. Instead, a Typedef-TypeNameassociated with the declaration of a true array should be used in the Allocation-TypeNamefield along with the appropriate compound initializer.
Initialization of Scalar Types
A scalar data item represents a numeric quantity that may be increased or decreased in magnitude as a single unit. Thus, an Initializerexpression for a scalar data item must be coded such that it resolves to a single scalar value. See the section on Scalar-Initializer-ExpressionTypefor the syntax and semantics of such expressions.
The old-style allocation directives (DB, DW, DD, DF, DQ, and DT) are supported in all assembler emulation modes, but for modes other than M510, the Scalar-TypeNamekeywords should be used instead.
When the Scalar-TypeNamekeywords are used instead of the old-style allocation directives, the assembler has full knowledge of the data types of the variables being created. This allows the assembler to make more intelligent code generation decisions, and it enables the assembler to correctly describe the variable in the symbolic debugging information that it generates for the source level debugger. Scalar-TypeNamesmay only be used as allocation directives in the ALPor M600modes.
To allocate an uninitialized scalar data item, use the Indeterminate-Value- Alias($) in the Initializerfield.
/-----------------------------------------------------------------------\ |Type Name|Data Type |Initializer Description | |---------+--------------------+----------------------------------------| |DB, BYTE,|Allocates 8-bit |Each Initializer must be in the range | |or SBYTE |(byte) values. |from 0 to 255 (unsigned) for a DB or | | | |BYTE directive, and from -128 to 127 | | | |(signed) for a SBYTE directive. | |---------+--------------------+----------------------------------------| |DW, WORD,|Allocates 16-bit |Each Initializer must be in the range | |or SWORD |(word) values. |from 0 to 65535 (unsigned) for a DW or | | | |WORD directive, and from -32768 to 32767| | | |(signed) for a SWORD directive. | |---------+--------------------+----------------------------------------| |DD, |Allocates 32-bit |If the Initializer is an integer, each | |DWORD, or|(double-word) |must be in the range from 0 to | |SDWORD |values. |4,294,967,295 (unsigned) for a DD or | | | |DWORD directive, and from -2,147,483,648| | | |to 2,147,483,647 (signed) for a SDWORD | | | |directive. If the DD directive is being| | | |used, an Initializer may also resolve to| | | |a 32-bit Floating-Point-ExpressionType. | |---------+--------------------+----------------------------------------| |DF or |Allocates 48-bit |Each Initializer typically specifies the| |FWORD |(6-byte far-word) |full address of a 32-bit far code or | | |values. |data label, but normal 32-bit integer | | | |values may also be used. The processor | | | |does not support 48-bit integer | | | |operations, thus the assembler does | | | |support 48-bit integer precision when | | | |initializing such variables. These | | | |directives are typically only useful for| | | |defining pointer variables for use on | | | |32-bit processors. | |---------+--------------------+----------------------------------------| |DQ or |Allocates 64-bit |Both DQ and QWORD allow an integer | |QWORD |(quad-word) values. |Initializer with 64-bit (8-byte) | | | |precision. If the DQ directive is being| | | |used, the Initializer field may resolve | | | |to a 64-bit | | | |Floating-Point-ExpressionType. | |---------+--------------------+----------------------------------------| |DT or |Allocates 80-bit |Both DT and TBYTE allow an integer | |TBYTE |(10-byte) values |Initializer with 80-bit (10-byte) | | | |precision. If the DT directive is being| | | |used, the Initializer field may resolve | | | |to a 80-bit | | | |Floating-Point-ExpressionType. | |---------+--------------------+----------------------------------------| |REAL4, |Allocates real |Each Initializer must resolve to a | |REAL8, or|(floating-point) |Floating-Point-ExpressionType. The | |REAL10 |values of a specific|assembler converts the floating-point | | |size (4 bytes, 8 |literal to the IEEE format appropriate | | |bytes, or 10 bytes).|for the type of variable being | | | |allocated. | \-----------------------------------------------------------------------/
Examples
Here are some examples of scalar initialization:
; Allocate some integer variables uint8 BYTE 0 , 255 ; min , max values for unsigned byte sint8 SBYTE - 128 , 127 ; min , max values for signed byte USHORT _ T TYPEDEF WORD ; Define a typedef alias for WORD ushort USHORT _ T 0 , 0FFFFh ; and use it as allocation type name ; Some things to know about string - literal initializers char BYTE " a " ; a single BYTE value ( 061h ) is _ int WORD " ab " ; a single WORD value ( 06162h ) this _ too DWORD " abcd " ; a single DWORD value ( 061626364h ) too _ long WORD " abcd " ; error , expression too big for a word string BYTE " string " , 0 ; but strings can allocate many bytes ; Integers , pointers , and old - style initializations PDWORD _ T TYPEDEF PTR DWORD ; First , define a pointer type ulong DWORD 0 , 0FFFFFFFFh ; min , max values for unsigned dword pulong PDWORD _ T OFFSET ulong ; pointer to the ulong variable old _ style DD 1 . 314 ; old style , floats are accepted new _ int SDWORD 1 . 314 ; new style , error - must use integers new _ real REAL4 1314 ; new style , error - must use floats ; Allocate some real numbers using decimal floating - point literals float _ f REAL4 123 . 45 ; 4 - byte IEEE real double _ f REAL8 98 . 7654E1 ; 8 - byte IEEE real longdbl _ f REAL10 1000 . 0E - 2 ; 10 - byte IEEE real ; The same values using hexdecimal floating - point literals float _ h REAL4 42F6E666r ; 4 - byte IEEE real double _ h REAL8 408EDD3B645A1CACr ; 8 - byte IEEE real longdbl _ h REAL10 4002A000000000000000r ; 10 - byte IEEE real
Initialization of Aggregate Types
An aggregate data item is a collection of one or more sub-items of possibly dissimilar types that are allocated, initialized, and treated as a single unit. The sub-items usually have unique names, and their positions relative to other sub-items is significant. The assembler provides the ability to define aggregate types through use of the RECORD, STRUCT, and UNIONdirectives.
Initialization of an aggregate data item requires a programming notation that isolates the entire aggregate from surroundings constructs, and denotes the position of each sub-item within the aggregate. The syntax for this construct is as follows:
Aggregate-Initializer:
{[Initializer-List] }
<[Initializer-List] >
Initializer-List:
Initializer-Item
Initializer-List, [LineBreak] Initializer-Item
Initializer-Item:
[Scalar-Initializer]
[Aggregate-Initializer]
[Array-Initializer]
The syntax requires that an Aggregate-Initializerbe enclosed in an outer set of braces or angle brackets, but the Initializer-Listor individual comma-separated Initializer-Items may be left unspecified, in which case a default initializer value is used. Commas are used to denote the position of each sub-item within the entire aggregate, and nested initializers are allowed to accomodate imbedded occurrences of other aggregates (or vector types, which share the same initializer syntax).
When initializing an instance of a union, the assembler only allows an initializer to be specified for the first field defined in the union type.
Examples
Here are some examples of aggregate initialization:
YES equ 1 NO equ 0 MAYBE equ - 1 BOOL _ T typedef sbyte IDEAS _ T struct sanctum BOOL _ T ? ; For scalar data , use the ? operator peace BOOL _ T ? ; to request an uninitialized value . pilzner BOOL _ T ? IDEAS _ T ends PROBLEM _ T struct work BOOL _ T YES ; Establish default initial values that car BOOL _ T NO ; can be inherited when an instance of house BOOL _ T MAYBE ; the structure is allocated PROBLEM _ T ends SOLUTION _ T struct fixing PROBLEM _ T { } ; Outermost set of braces required even IDEAS _ T { } ; with unspecified ( default ) initializers SOLUTION _ T ends DATA segment ProblemWith PROBLEM _ T { NO , , MAYBE } ; First - level structure ThinkOf SOLUTION _ T { { YES , YES , YES } , ; Intializer syntax for { NO , NO , NO } } ; imbedded structures DATA ends CODE segment assume ds : DATA mov al , NO or al , ProblemWith . work or al , ProblemWith . car or al , ProblemWith . house jz exit mov ThinkOf . fixing . work , NO ; References to named fields in mov ThinkOf . fixing . car , NO ; imbedded structures must be mov ThinkOf . fixing . house , NO ; fully qualified . exit : mov ThinkOf . pilzner , YES ; Reference to " promoted " field ret CODE ends end
Initialization of Vector Types
A vector data item is a linear collection of one or more sub-items of identical type that are allocated, initialized, and treated as a single unit. A vector (more commonly referred to as an array) is defined to have a specific number of items n, which are numbered from 0to n - 1and occupy a contiguous area of allocated storage. The items in the vector may be of any type, possibly even other vectors (commonly known as a multi- dimensional array). The assembler provides the ability to define vector types through the use of the standard Type-Declarationsyntax.
The syntax required to initialize a vector is similar to that used for an aggegrate data type, and is as follows:
Array-Initializer:
{[Initializer-List] }
<[Initializer-List] >
Initializer-List:
Initializer-Item
Initializer-List, [LineBreak] Initializer-Item
Initializer-Item:
[Scalar-Initializer]
[Aggregate-Initializer]
[Array-Initializer]
The syntax requires that an Array-Initializerbe enclosed in an outer set of braces or angle brackets, but the Initializer-Listor individual comma- separated Initializer-Items may be left unspecified, in which case a default initializer value is used. Commas are used to denote the position of each sub-item within the entire array, and nested initializers are allowed to accomodate imbedded occurrences of other arrays (or aggregate types, which share the same initializer syntax).
Examples
Here are some examples of vector initialization:
; Data structures to define a " computer " data type TRUE equ 1 FALSE equ 0 MB equ 1024 ; Megabytes BOOL _ T typedef BYTE ; true or false value INCHES _ T typedef BYTE ; number of inches MONITOR _ T typedef INCHES _ T ; size of monitor in inches KEYBOARD _ T typedef BOOL _ T ; is a keyboard installed ? MOUSE _ T typedef BOOL _ T ; is a mouse installed ? KBYTES _ T typedef WORD ; number of kilobytes MBYTES _ T typedef WORD ; number of megabytes FPRESENT _ T typedef BOOL _ T [ 2 ] ; up to two floppies installed FSIZE _ T typedef KBYTES _ T [ 2 ] ; how big they are DPRESENT _ T typedef BOOL _ T [ 4 ] ; up to four hardfiles installed DSIZE _ T typedef MBYTES _ T [ 4 ] ; how big they are RAM _ T typedef DWORD ; how much memory we have NAME _ T typedef BYTE [ 64 ] ; what we call the system FLOPPIES _ T struct DriveCount FPRESENT _ T { TRUE , FALSE } ; assume one floppy installed DriveSize FSIZE _ T { 360 , 0 } ; assume 360KB in size : - ) FLOPPIES _ T ends DRIVES _ T struct DriveCount DPRESENT _ T { TRUE , FALSE , FALSE , FALSE } ; one drive installed DriveSize DSIZE _ T { 20 , 0 , 0 , 0 } ; 20MB in size ( ! ) DRIVES _ T ends COMPUTER _ T struct Monitor MONITOR _ T 14 ; Assume a 14 inch monitor Keyboard BOOL _ T TRUE ; We have a keyboard Mouse BOOL _ T FALSE ; but no mouse Memory RAM _ T 640 ; Assume 640KB Floppies FLOPPIES _ T { } ; Go with the defaults HardFiles DRIVES _ T { } ; Go with the defaults ModelName NAME _ T { } ; No default name COMPUTER _ T ends DATA segment Circa1997 COMPUTER _ T \ ; initializer begins on next line { 17 , ; of course , we have a 17 " monitor TRUE , TRUE , ; a keyboard and a mouse 32 * MB , ; 32 Megabytes of ram { { } , ; still one floppy { 1440 } } , ; but it has a 1 . 2 MB capacity { { , TRUE , TRUE } , ; also have second and third hardfiles { 512 , 1024 , 4096 } } , ; 512MB , 1 GIG , and 4 GIG { " Spiffatron 9000 " , 10 , 13 , ; with a fancy system name " Acme Computers " , 10 , 13 , 0 } } DATA ends end
Intermodule Linkage
To use symbols and procedures in more than one module, ALP must recognize shared data as global to all modules. ALP provides directives to simplify data sharing and a high-level interface to multiple-module programming. With these directives, you can define shared symbols and refer to them from other modules.
This section describes the following intermodule linkage directives:
COMM
END
EXTERN/EXTRN
EXTERNDEF
INCLUDELIB
NAME
PUBLIC
COMM (Declare Communal Variable)
Declares an uninitialized commonor communalvariable that is allocated by the linker.
Syntax
COMM [ Language - Name ] [ Distance ] Name [ [ Count ] ] : TypeName [ : Size ] [ , . . . ]
Remarks
The arguments to the COMMdirective are as follows:
Language-NameOptional parameter that determines how Nameis spelled when written to the object file. Used when interfacing with routines written in high-level languages. If not specified, the language defaults to the value set by .MODELor OPTION LANGUAGE.
DistanceOne of NEARor FAR; determines the distance of allocated variable. If not specified, the current memory model determines the distance. The default is NEARif no memory model is active.
NameThe name of the variable to be allocated by the linker. This field is required.
[Count]Optional; if specified, this parameter must be surrounded by square brackets. The Countparameter can be thought of as a major (row) array dimension. It defaults to 1 if not specified.
TypeNameRequired parameter that specifies the type of the variable being allocated. It must be a single keyword or identifier that specifies a Distance-TypeName, Scalar-TypeName, or UserDefined-TypeName.
Size''Sizeis an optional parameter that can be thought of as a minor ( column) array dimension. It defaults to 1 if not specified.
Communal variables are allocated by the linker. When the linker combines object modules together, all instances of an identically-named communal variable are merged into a single instance (union), and are uninitialized.
The allocated size of a communal variable is the largest size requested by all encountered references.
The allocation order with respect to the addresses of other global symbols is undefined; an application must not depend on the address of a communal variable being less than or greater than that of another global symbol.
A variable allocated with the COMMdirective need not be declared in all referencing modules as communal; the linker matches all EXTERN/EXTRNreferences with that of the communal variable. Similarly, a variable allocated in one module with the PUBLICdirective may be declared in other modules as communal.
Since communal variables cannot be initialized and their address positions cannot be compared, use of the COMMdirective is discouraged. The EXTERNDEFdirective should be used instead.
END (Define End of Module and Entry Point)
The ENDdirective has two functions:
�Identifies the end of the source program.
�Identifies the symbol that is the name of the entry point (through the Expressionon the ENDdirective)
Syntax
END [ Expression ]
Remarks
All source files must have the ENDdirective as the last statement. Any lines following the ENDstatement are ignored by the assembler.
When the linker builds an application program from one or more object modules, it needs to know where the entry point is for the operating system to pass initial control. If you do not specify an entry point, none is assumed. Only one module can identify a label as the entry point by specifying that label on its ENDstatement. Any module not defining an operating system entry point must not have an entry point identified on its ENDstatement. If you fail to define an entry point for the main module, your program may not be able to initialize correctly. It will assemble and link without error, but it cannot run.
Example
The following example is the ENDstatement for the section of code that starts with the name BEGIN.
END BEGIN
EXTERN/EXTRN (Declare External Identifier)
The EXTERNdirective specifies a declaration for the external symbol Nameso that it may be referred to within this module. The actual definition for the symbol occurs in some other module, and the linker resolves all such external declarations to a single definition for Name.
Syntax
EXTERN [ Language - Name ] Name [ ( Default - Resolution ) ] : Type [ , . . . ]
Where Typeis one of:
�ABS
�Type-Declaration
Remarks
The obsolete spelling for the EXTERNdirective is EXTRN.
The external source module that defines the symbol must give it public visibility in the corresponding object module, which is accomplished in assembler language by declaring it with the COMMdirective, defining the symbol in association with an EXTERNDEFor PUBLICdirective, or by specifying the PUBLICor EXPORTattributes in a PROCdirective.
If the EXTERNdirective is given within a segment, the assembler assumes that the symbol is located within that segment. If the segment is not known, place the EXTERNdirective outside all segments and either use an explicit segment prefix or an ASSUMEdirective.
A Typevalue of ABSindicates that Nameis an externally-defined constant value. Local references to Nameare treated as immediate values having an Operand Sizeequal to the Address Sizeof the segment containing the reference.
Note:If the Typeof EXTERNis ABS, it may not be used anywhere in this module where conversion to an immediate value of type BYTEis required. Additionally, the defining module must define the value as a constant symbol.
For example:
FOO EQU 5 PUBLIC FOO
Use of the (default_resolution)syntax declares the external symbol Nameto be a "weak" symbol, in which case the linker will pair all such declarations with the symbol default_resolutionunless a standard "strong" public definition for Nameis encountered during the link.
Example
/-----------------------------------------------------------------------\ |IN THE SAME SEGMENT |IN ANOTHER SEGMENT | |-----------------------------------+-----------------------------------| |IN MODULE 1: |IN MODULE 1: | | | | |cseg segment |csega segment | |public tagn |public tagf | |. |. | |. |. | |. |. | |tagn: |tagf: | |. |. | |. |. | |. |. | |cseg ends |csega ends | | | | |IN MODULE 2: |IN MODULE 2: | | | | |cseg segment |extern tagf:far | |extern tagn:near |csegb segment | |. |. | |. |. | |. |. | |jmp tagn |jmp tagf | |cseg ends |csegb ends | \-----------------------------------------------------------------------/
EXTERNDEF (Declare Global Identifier)
The EXTERNDEFdirective combines the functionality of the EXTERN/EXTRNand PUBLICdirectives. It provides a uniform way to declare global symbols that are to be shared across multiple modules.
Syntax
EXTERNDEF [ Language - Name ] Name : Type [ , . . . ]
Where Typeis one of:
�ABS
�Type-Declaration
Remarks
A symbol declared with EXTERNDEFis treated as PUBLICif a definition for the symbol is encountered during the assembly, otherwise the symbol is assumed to be defined in another module and is treated as if it were declared with the EXTERN/EXTRNdirective.
Example
The following example shows how a declaration for the ReturnCodesymbol can be shared between two modules (Main.asm and FileErr.asm) by way of a common header file (ErrNum.inc):
; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ; ErrNum . inc RETCODE _ T typedef DWORD RC _ NoError equ 0 RC _ FileNotFound equ 1 RC _ SystemError equ 3 EXTERNDEF ReturnCode : RETCODE _ T ; declaration ; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ; FileErr . asm . 386 . MODEL FLAT INCLUDE ErrNum . inc ; bring in error number definitions ; and declaration for ReturnCode . CODE ; Tell the user about the file error , ; then make sure the program has a non - zero exit status FileError proc . . . mov ReturnCode , RC _ FileNotFound ret FileError endp end ; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ; Main . asm . 386 . MODEL FLAT INCLUDE ErrNum . inc ; bring in error number definitions ; and declaration for ReturnCode EXTERNDEF FileError : PROC ; This could be in a common header too . DATA ReturnCode RETCODE _ T RC _ NoError ; actual definition of ReturnCode . CODE Main proc . . . . . . call FileError ; hypothetical error condition . . . . . . mov eax , ReturnCode ; load the exit status call Exit ; and shutdown the program Main endp end Main
INCLUDELIB (Pass Library Name to Linker through Object File)
The INCLUDELIBdirective is used to inform the linker that a library file of a given name is to be used when attempting to resolve external references declared by this module.
Syntax
INCLUDELIB FileName
Remarks
The FileNameargument is parsed as a contiguous string of arbitrary characters, and should constitute a file name that is valid in the context where it will be used. The FileNameshould be coded as a <text-literal> if it is to contain embedded spaces or other special characters.
The assembler emits a special record into the object file which contains the string of characters given by the FileNameentry. This record instructs the linker to include the named library file in its list of libraries to be searched during the process of resolving external references. The assembler attaches no other meaning to the object file record, and it is up to the linker to interpret the file name for any special meaning (such as search path information, file name extension, and so on).
Use of this directive avoids the need to explicitly reference the library name in a linker invocation parameter, and helps to avoid the problems that can arise when such parameters are specified incorrectly.
Example
INCLUDELIB OS2386 . LIB
NAME (Specify Module Name)
The NAMEdirective assigns a module a name.
Syntax
NAME module - name
Remarks
The NAMEdirective is ignored; it is provided for backward compatibility with other assemblers.
PUBLIC (Make Symbol Visible to Other Modules)
The PUBLICdirective makes defined symbols available to other programs that are to be linked. The information referred to by the PUBLICdirective is passed to the linker.
Syntax
PUBLIC [ Language - Name ] Identifier [ , . . . ]
Remarks
Identifiercan be a variable or a label (including PROClabels). Register names and any symbols defined by EQUor = to floating-point numbers or integers larger than 4 bytes are incorrect entries.
Example
PUBLIC GETINFO ; Make GETINFO visible to linker GETINFO PROC FAR PUSH BP ; Save caller ' s register MOV BP , SP ; Get address of parameters ; BODY OF SUBROUTINE POP BP ; restore caller ' s register RET ; return to caller GETINFO ENDP
Listing Control
ALP creates an assembler listing of your source file whenever you use a related source code directive or specify the +Floption on the ALP command line.
The assembler listing contains:
�Cumulative Listing Line Number
�Individual Source File Line Number
�Macro Expansion Line Number
�Macro Definition Line Number
�Macro Expansion Indentation Level
�Macro Expansion Nesting Level
�Include File Nesting Level
�Conditional Assembly Nesting Level
�True or False Conditional Flag
�Location Counter Offset Value
�Generated Machine Code Data
�Source Line Data
If requested (via the +Lscommand line option) a symbol table listing is produced that shows the names and values of all of the user-defined identifiers created during the assembly. The values of certain predefined identifiers are also show in the symbol table listing.
The symbol table listing is divided into the following categories:
�Macro Names
�Text Equate Names
�Structures/Union Type Names
�Orphaned Structure Fields
�Record Type Names
�Typedef Type Names
�Group Names
�Segment Names
�Numeric Equate Names
�Code Label Names
�Procedure Names
�Variable Names
ALP places the symbol table listing at the end of the listing output. ALP lists only the types of symbols encountered in the program. For example, if your program does not define any macros, the Macro Namessection is omitted from the listing output.
This section describes the following listing control directives:
%BIN
.CREF
.LALL
.LFCOND
.LIST
.LISTALL
.LISTIF
.LISTMACRO
.LISTMACROALL
.NOCREF
.NOLIST
.NOLISTIF
.NOLISTMACRO
PAGE
.SALL
.SFCOND
SUBTITLE
SUBTTL
.TFCOND
TITLE
.XALL
.XCREF
.XLIST
%BIN (Set Listing Width for Object Code Field)
Sets the width of the object code field in the listing file to sizecolumns .
Syntax
% BIN size
.CREF/.XCREF (Control Symbol Cross Referencing)
The output of the cross-reference information is controlled by these directives. The default condition is the .CREFdirective. When the assembler finds a .XCREFdirective, cross-reference information results in no output until the assembler finds
Note:The assembler does not produce cross-referencing information. These directives are provided for source file compatibility with other assemblers .
Syntax
. CREF or . XCREF [ [ operand [ , . . . ] ]
Remarks
The .XCREFdirective can have an optional operand consisting of a list of one or more variable names suppressed in the cross-reference listing.
.LFCOND (List False Conditionals)
You use the .LFCOND(List False Conditionals) directive to list conditional blocks that are evaluated as false.
Syntax
. LFCOND
Remarks
Equivalent to the .LISTIFdirective.
.LFCONDdoes not have an operand. You can end this state either by issuing .TFCOND, which reverts to the default state concerning listing of false conditionals (but with the default state redefined as being in the opposite state,) or by issuing the .SFCOND, which suppresses the listing of false conditionals.
The assembler does not print false conditionals within macros when .LALLis set.
.LIST/.XLIST (Control Listing File Output)
These two directives control output to the listing file.
Syntax
. LIST or . XLIST
Remarks
If a listing is not being created, these directives have no effect. The . LISTis the default condition. When the assembler finds an .XLIST, the assembler does not list the source and the object code until it finds a . LISTdirective.
.LISTALL (List All Statements)
Starts the listing of all statements.
Syntax
. LISTALL
Remarks
Equivalent to the combination of .LIST, .LISTIF, and .LISTMACROALL.
.LISTIF (List False Conditionals)
Starts the listing of all statements, including those in false conditional blocks.
Syntax
. LISTIF
Remarks
Equivalent to the combination of .LIST, .LISTIF, and .LISTMACROALL.
.LISTMACRO/.XALL (List Code and Data Statements in Macros)
Starts listing of only those statements that generate code or data when processing macro expansions.
Syntax
. LISTMACRO or . XALL
Remarks
ALP does not support this mode; it is provided for compatibility with other assemblers.
.LISTMACROALL/.LALL (List All Statements in Macros)
Starts listing of all statements when processing macros expansions.
Syntax
. LISTMACROALL or . LALL
.NOCREF (Suppress Symbol Cross Referencing)
Suppresses the listing of symbols in the symbol table and cross-referencing output.
Note:The assembler does not produce cross-referencing information. This directive is provided for source file compatibility with other assemblers.
Syntax
. NOCREF [ name [ , name ] . . . ]
Remarks
If names are specified, only the given names are suppressed. Same as .XCREF .
.NOLIST (Suppress List Output)
Suppresses program listing.
Syntax
. NOLIST
Remarks
Same as .XLIST.
.NOLISTIF (Do Not List False Conditionals)
Suppresses listing of conditional blocks whose condition evaluates to false (0).
Syntax
. NOLISTIF
Remarks
This is the default. Same as .SFCOND.
.NOLISTMACRO (Do Not List Macro Expansions)
Suppresses listing of macro expansion.
Syntax
. NOLISTMACRO
Remarks
Same as .SALL.
This is the default setting for ALP.
PAGE (Control Listing Page Length and Width)
The PAGEdirective controls the length and width of each listing page. Place the PAGEdirective in the source file to control the format of the listing file produced during assembly.
Syntax
PAGE [ operand - 1 ] [ , operand - 2 ] or PAGE +
Remarks
Using PAGE+ or the PAGEdirective without an operand entries causes the printer to go to the top of the page and increases the page number by 1. The assembler normally takes this action only when a page is full.
The operand-1entry specifies the actual number of lines that can be physically printed on the page; the default value is 66.
Use the operand-2entry to control the width of the page. The page width without a specified number is 132.
Note:The PAGEdirective does not set the printer to the desired line width. For proper formatting of the listing, initialize the printer to operate at a corresponding line width before printing the listing file.
SUBTITLE/SUBTTL (Specify Listing Page Subtitle)
Defines the subtitle displayed in the user area of each page in the listing output.
Syntax
SUBTITLE text or SUBTTL text
.TFCOND (Toggle Listing of False Conditionals)
Toggles listing of false conditional blocks.
Syntax
. TFCOND
TITLE (Specify Listing Page Title)
Defines the title displayed in the user area of each page in the listing output.
Syntax
TITLE text
Procedure Control
Procedure control directives allow you to organize your code into procedures. The PROCand ENDPdirectives mark the beginning and end of a procedure. Also, PROCcan automatically:
�Preserve higher register values that should not change but that the procedure might otherwise alter
�Set up a local stack pointer, so that you can access parameters and local variables placed on the stack
�Adjust the stack when the procedure ends
This section describes the following procedure control directives:
PROC
LOCAL
ENDP
PROC (Identify Code Procedure)
The PROCdirective identifies a block of code. By dividing the code into blocks, each of which performs a distinct function, you can clarify the overall function of the complete module.
The PROCdirective also identifies the procedure distanceto help insure that the assembler generates the appropriate instructions for calling and returning from the procedure while maintaining the integrity of the run- time stack.
Syntax
Procedure - Name PROC [ Attributes ] [ Register - List ] [ Parameter - List ] . . . RET [ Constant ] . . . Procedure - Name ENDP
Refer to the following sections for descriptions of the optional arguments to the PROCdirective:
�Attributes
�Register-List
�Parameter-List
Remarks
You can execute the block of code identified by the PROCdirective in-line, jump to it, or start it with a CALLinstruction. If the PROCis called from code that has another ASSUME CSvalue, you must use the appropriate FAR, FAR16, or FAR32distance attribute.
The NEARattribute causes any RETinstruction coded within the procedure to be an intra-segment return that pops a return offsetfrom the stack. You can call a NEARsubroutine only from the same segment. However, the FARattribute causes RETto be an inter-segment return that pops both a return offsetand a segment basefrom the stack. You can call a FARsubroutine from any segment; a FARsubroutine is usually called from a segment other than the one containing the subroutine.
Example
In this example, the Near_Namesubroutine is called by the Far_Namesubroutine.
PUBLIC Far _ Name Far _ Name PROC FAR CALL Near _ Name RET ; Pops return offset and seg base value Far _ Name ENDP PUBLIC Near _ Name Near _ Name PROC NEAR . . . RET ; pops only return offset Near _ Name ENDP
You can call the Near_Namesubroutine directly from a NEARsegment by using :
CALL Near _ Name
A FARsegment can indirectly call the second subroutine by first calling the Far_Namesubroutine with:
CALL Far _ Name
A CALLto a forward-referenced symbol assumes the symbol is NEAR. If that symbol is FAR, the CALLmust have an override, for example:
CALL FAR PTR Forward _ Reference
Attributes
The optional fields in the Attributesargument control how the procedure is defined.
Syntax
[ Distance ] [ Language ] [ Visibility ]
Remarks
The various Attributefields are defined as follows:
DistanceDetermines the type of CALLinstruction that should be used to invoke the procedure, and the type of RETinstruction generated by the assembler. The default is NEARif no .MODELdirective has been specified, or if the model has been set to TINY, SMALL, COMPACT, or FLAT. The default is FARif the model has been set to LARGE, MEDIUM, or HUGE. If the programmer is using segments with mixed address sizes (USE16and USE32) on a 32-bit processor, then the NEAR16, FAR16, NEAR32, and FAR32keywords may also be used.
LanguageDetermines the calling convention used by the procedure, and the naming convention used when writing the procedure name to the object file. The calling convention defines the layout of the stack frame upon entry to the procedure and how the stack frame is destroyed upon procedure exit. See the section on LabelNamesfor more information on language naming conventions.
With the BASIC, FORTRAN, and PASCALcalling conventions, the called procedure expects arguments to be pushed on the stack from left to right, causing the rightmost parameter to be at the lowest stack address and closest in proximity to the frame pointer(the BP or EBP register). With this arrangement, the called procedure always knows the exact amount of stack space used by the parameters, and is responsible for removing them from the stack with a RET'''Constantinstruction when the procedure exits. Such procedures are unable to accept a variable number of arguments.
With the C, STDCALL, SYSCALL, and OPTLINKcalling conventions, the called procedure expects arguments to be pushed on the stack from right to left, causing the leftmost parameter to be at the lowest stack address and closest in proximity to the frame pointer(the BP or EBP register). With this arrangement, the calling procedure is free to push additional arguments on the stack, and is responsible for restoring the stack after the called procedure returns (STDCALLrequires the called procedure to restore the stack if a fixed number of arguments is being passed).
With the OPTLINK32-bit calling convention (as defined by the IBM VisualAge C/C++ Compiler environment), up to three parameters will be passed in machine registers to the called procedure, provided they not larger than a DWORD in size. The EAX, EDX, and ECX registers (respectively) are used for this purpose. Stack space for the parameters is still allocated, but the parameter values are not actually copied onto the stack. Refer to the documentation for the IBM VisualAge C++ compiler for more information on the OPTLINKcalling convention.
VisibilityDetermines if the procedure name is written to the object file as a global identifier, allowing it to be referenced by other modules. The allowable values are PRIVATE, PUBLIC, and EXPORT. If operating in M510mode and no .MODELdirective with a Language-Namehas been specified, then the default visibility is PRIVATE. In all other situations, the default visibility is PUBLICunless the default has been overridden by an OPTION LANGUAGEdirective.
When the PRIVATEkeyword is used, the procedure name is visible only within the defining module at assembly-time. When the visibility is PUBLIC, the procedure name is made visible to other modules at link-time. The same is true of EXPORTvisibility, but in this case the assembler emits a special record into the object file that causes the linker to also make the symbol visible as an exported entry point in the executable module , allowing it be called by other modules at program run-time.
Register List
The optional Register-Listdefines those registers used in the body of the procedure that must be preserved on behalf of the caller. The assembler generates code to save these registers on the stack when the procedure is entered, and to restore them when the procedure exits.
Syntax
USES Register [ Register . . . ]
Register:
16-Bit-Register
32-Bit-Register
Segment-Register
Remarks
When more than one register is specified, do not use commas to separate the register keywords; use blanks or tabs instead.
Parameter List
The optional Parameter-Listdefines the parameters that the caller passes to the procedure on the run-time stack.
Syntax
[ , [ LineBreak ] ] Parm - List
Parm-List:
Parm-Spec[, [LineBreak] Parm-Spec...]
Parm-Spec:
Parameter-Name[:Type]
The introductory comma in front of the Parm-Listis only required if a LineBreakis used to put the first Parm-Specon the line following the PROCdirective.
The optional LineBreakentry allows you to end a Parm-Specentry with a comma, enter an optional EndOfLine-Commentfollowed by a physical NewLinecharacter, then continue the Parm-Liston the next line.
Remarks
Each Parameter-Nameis defined as a Numeric-EquateNamethat is visible only from within the body of the procedure. The value assigned to the parameter name is an expression that defines the parameter type and its location on the stack relative to the value of the frame pointer(the BP or EBP register). The assembler automatically calculates the correct offset value based upon the size of the parameter type.
The Typefield is specified as a Type-Declarationand defines the data type associated with the Parameter-Name. If this field is omitted, the data type defaults to WORDif the procedure is defined within a USE16segment, and DWORDif the procedure is defined within a USE32segment.
The programmer can read from and store into the locations defined by the Parm-Specentries as though they were regular named variables, but if the parameter names are to be combined in indexed expressions with other registers, the normal rules for specifying BP- and EBP-relative expressions must be followed.
Example
This example defines a ReadBufferprocedure to accept four arguments passed on the stack.
. 386 ; Assemble for 32 - bit processors . model flat , syscall ; OS / 2 programming model / calling convention EXTERN DosRead : PROC ; OS / 2 DosRead ( ) API INCLUDELIB os2386 . lib ; This lets us link to the API . code ; Open the code segment ; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ; Call operating system to read input into a buffer ; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ReadBuffer PROC , ; need comma to continue the PROC statement hFile : dword , ; parm 1 : Read handle pBuffer : ptr byte , ; parm 2 : Address of input buffer cbRead : dword , ; parm 3 : Size of input buffer pulActual : ptr dword ; parm 4 : Address of byte count from read ; set up to call the OS / 2 DosRead entry point PUSH pulActual ; arg 4 PUSH cbRead ; arg 3 PUSH pBuffer ; arg 2 PUSH hFile ; arg 1 CALL DosRead ; Invoke syscall ( SYSTEM ) function ADD ESP , DWORD * 4 ; Remove the four parameters we pushed ; onto the stack for the DosRead call RET ReadBuffer ENDP
LOCAL (Define Local Procedure Variables)
The LOCALdirective defines local stack variables from within a code procedure.
Syntax
LOCAL Local - Spec [ , [ LineBreak ] Local - Spec . . . ]
Local-Spec:
Local-Name[:Type-Declaration]
Local-Name[Count][:Type-Declaration]
The optional LineBreakentry allows you to end a Local-Specentry with a comma, enter an optional EndOfLine-Commentfollowed by a physical NewLinecharacter, then continue with a new Local-Specon the next line.
Remarks
The LOCALassembler directive can only appear within the body of a procedure. If used, the LOCALdirective(s) must immediately follow the PROCstatement that encloses them, and they must appear before any instructions, code labels, or directives that modify the location counter. Multiple LOCALdirectives may appear in succession.
Each Local-Nameis defined as a Numeric-EquateNamethat is visible only from within the body of the procedure. The value assigned to the variable name is an expression that defines the type of the variable and its location on the stack relative to the value of the frame pointer(the BP or EBP register). The assembler reserves space on the stack for each local variable and automatically calculates their locations. After all Local- Specentries have been processed, the assembler allocates the space by generating instructions to adjust the stack pointer. The assembler also generates instructions to restore the state of the stack and frame pointers when the procedure exits.
The optional [Count]entry can be used to indicate that the variable is a simple "array" of values, where Countis a constant expression. If used, the square brackets surrounding the Countmust be specified. Use of this notation is discouraged however, because it does not associate a "true array" data type with the variable, and cannot be viewed as such from within a symbolic debugger. ALP allows the variable to be associated with a "true array" data type through use of the native Type-Declarationsyntax.
The Type-Declarationfield specifies the data type to be associated with the Local-Name. If this field is omitted, the data type defaults to WORDif the procedure is defined within a USE16segment, and DWORDif the procedure is defined within a USE32segment.
Example
; bootdrv . asm : Returns value of OS / 2 boot drive as exit code ; assemble as : alp + Od bootdrv . asm ; link as : link386 / de bootdrv ; . 386 ; Assemble for 32 - bit processors . model flat , syscall ; OS / 2 flat model / calling convention . stack 4096 EXTERN DosExit : PROC ; OS / 2 DosExit ( ) API EXTERN DosQuerySysInfo : PROC ; OS / 2 DosQuerySysInfo ( ) API INCLUDELIB os2386 . lib ; link with these routines ; These are values taken from OS / 2 API headers . See the OS / 2 Toolkit ; Control Program Programming Guide and Reference for more information . EXIT _ PROCESS EQU 1 ; for DosExit QSV _ BOOT _ DRIVE EQU 5 ; For DosQuerySysInfo ULONG TYPEDEF DWORD ; use OS / 2 type convention . code ; open code segment main PROC LOCAL BootDrive : ULONG ; place to put value of boot drive ; Push parameters to DosQuerySysInfo onto the stack PUSH sizeof BootDrive ; arg 4 : size of output buffer LEA EAX , BootDrive ; arg 3 : Address of buffer PUSH EAX PUSH QSV _ BOOT _ DRIVE ; arg 2 : last ordinal value to return PUSH QSV _ BOOT _ DRIVE ; arg 1 : first ordinal , same as last CALL DosQuerySysInfo ; invoke API ADD ESP , DWORD * 4 ; remove the parameters from the stack CMP EAX , 0 ; Did the API succeed ? MOV EAX , 0 ; if not , use zero as a return code JNZ SomeKindOfError ; and skip around to the exit logic MOV EAX , BootDrive ; else , return the boot drive value SomeKindOfError : push EAX ; exit code push EXIT _ PROCESS ; terminates all threads call DosExit ; exit to calling process RET ; never executed main ENDP END main
ENDP (Close a Procedure Definition Block)
Every procedure block opened with the PROCdirective must be ended with the ENDPdirective.
Syntax
procedure - name ENDP
Remarks
If the ENDPdirective is not used with the PROCdirective, an error occurs. An unmatched ENDPalso causes an error.
Note:See the PROCdirective in this chapter for more detail and examples of ENDPuse.
Example
PUSH AX ; Push third parameter PUSH BX ; Push second parameter PUSH CX ; Push first parameter CALL ADDUP ; Call the procedure ADD SP , 6 ; Bypass the pushed parameters . . . ADDUP PROC NEAR ; Return address for near call ; takes two bytes PUSH BP ; Save base pointer - takes two more ; so parameters start at 4th byte MOV BP , SP ; Load stack into base pointer MOV AX , [ BP + 4 ] ; Get first parameter ; 4th byte above pointer ADD AX , [ BP + 6 ] ; Get second parameter ; 6th byte above pointer ADD AX , [ BP + 8 ] ; Get third parameter ; 8th byte above pointer POP BP ; Restore base RET ; Return ADDUP ENDP
In this example, three numbers are passed as parameters for the procedure ADDUP. Parameters are often passed to procedures by pushing them before the call so that the procedure can read them off the stack.
Processor Control
ALP provides a set of directives for selecting processors and coprocessors. Once you select a processor, you must only use the instruction set available for that processor. The default is the 8086 processor. If you always want your code to run on this processor, you need not add any processor directives.
This section describes the following processor control directives:
.8086
.8087
.186
.286
.286P
.287
.386
.386P
.387
.486
.486P
.586
.586P
.686
.686P
.MMX
.NOMMX
.8086 (Select 8086 Processor Instruction Set)
The .8086directive tells the assembler to recognize and assemble 8086 instructions. This directive assembles only 8086 and 8088 instructions (the 8088 instructions are identical to the 8086 instructions). ALP assembles 8086 instructions by default.
Syntax
. 8086
Remarks
The .8086directive does not have an operand.
Note:The .8086directive does not end ALP 8087/80287 mode.
.8087 (Select 8087 Coprocessor Instruction Set)
The .8087directive tells the assembler to recognize and assemble 8087 instructions and data formats. ALP assembles 8087 instructions by default.
Syntax
. 8087
Remarks
The .8087directive does not have an operand.
.186 (Select 80186 Processor Instruction Set)
The .186directive tells the assembler to recognize and assemble 8086 or 8088 instructions and the additional instructions for the 80186 microprocessor.
Syntax
. 186
Remarks
The .186directive does not have an operand. Use it only for programs that run on an 80186 microprocessor.
.286 (Select 80286 Processor Instruction Set)
Enables assembly of nonprivileged instructions for the 80286 processor. Disables assembly of instructions introduced with later processors. Also enables 80287 instructions.
Syntax
. 286
.286P (Select 80286 Processor Protected Mode Instruction Set)
The .286Pdirective tells the assembler to recognize and assemble the protected instructions of the 80286 in addition to the 8086, 8088, and nonprotected 80286 instructions.
Syntax
. 286P
Remarks
The .286Pdirective does not have an operand. Use it only for programs run on an 80286 processor using both protected and nonprotected instructions.
.287 (Select 80287 Coprocessor Instruction Set)
The .287directive tells the assembler to recognize and assemble instructions for the 80287 floating point math coprocessor. The 80287 instruction set consists of all 8087 instructions, plus three additional instructions.
Syntax
. 287
Remarks
The .287directive does not have an operand. Use it only for programs that have 80287 floating point instructions and run on an 80287 math coprocessor .
.386 (Select 80386 Processor Instruction Set)
Enables assembly of nonprivileged instructions for the 80386 processor. Disables assembly of instructions introduced with later processors. Also enables 80387 instructions.
Syntax
. 386
.386P (Select 80386 Processor Protected Mode Instruction Set)
Enables assembly of all instructions (including privileged) for the 80386P processor. Disables assembly of instructions introduced with later processors. Also enables 80387 instructions.
Syntax
. 386P
.387 (Select 80387 Coprocessor Instruction Set)
Enables assembly of instructions for the 80387 coprocessor.
Syntax
. 387
.486 (Select 80486 Processor Instruction Set)
Enables assembly of instructions for the 80486 processor. Also enables 80387 (and later) floating point instructions.
Syntax
. 486
Remarks
The .486directive is not available in M510mode.
.486P (Select 80486 Processor Protected Mode Instruction Set)
Enables assembly of all instructions (including privileged) for the 80486 processor. Also enables 80387 (and later) floating point instructions.
Syntax
. 486P
Remarks
The .486Pdirective is not available in M510mode.
.586 (Select Pentium/586 Processor Instruction Set)
Enables assembly of instructions for the Pentium processor family. Also enables 80387 (and later) floating point instructions.
Syntax
. 586
Remarks
The .586directive is not available in M510mode or M600mode.
.586P (Select Pentium/586 Processor Protected Mode Instruction Set)
Enables assembly of all instructions (including privileged) for the Pentium processor family. Also enables 80387 (and later) floating point instructions.
Syntax
. 586P
Remarks
The .586Pdirective is not available in M510mode or M600mode.
.686 (Select Pentium Pro/686 Processor Instruction Set)
Enables assembly of instructions for the Pentium Pro processor family. Also enables 80387 (and later) floating point instructions.
Syntax
. 686
Remarks
The .686directive is not available in M510mode or M600mode.
.686P (Select Pentium Pro/686 Processor Protected Mode Instruction Set)
Enables assembly of all instructions (including privileged) for the Pentium Pro processor family. Also enables 80387 (and later) floating point instructions.
Syntax
. 686P
Remarks
The .686Pdirective is not available in M510mode or M600mode.
.MMX (Select MMX Processor Instruction Set Extensions)
Enables recognition of mnenomics for the MMX instruction set extensions.
Syntax
. MMX
Remarks
If 586 mnemonics (or later) are not already being recognized, the .MMXdirective also causes an implicit .586directive to be executed.
Issuing any .486(or earlier) processor selection directive causes recognition of MMX mnemonics to be disabled.
If MMX mnemonics are being recognized, issuing a .586(or later) processor selection directive does not cause recognition of MMX mnemonics to be disabled. If this behavior is desired, use the .NOMMXdirective.
The .MMXdirective is not available in M510mode or M600mode.
.NOMMX (Deselect MMX Processor Instruction Set Extensions)
Disables recognition of mnenomics for the MMX instruction set extensions.
Syntax
. NOMMX
Remarks
Does not affect recognition of instruction mnemonics for the currently selected primary processor; it only disables recognition of the MMX mnemonics.
The .NOMMXdirective is not available in M510mode or M600mode.
Example
; Top of file - no processor currently selected . MMX ; enables both MMX and 586 mnemonics . NOMMX ; 586 mnemonics still enabled . 686 ; 686 mnemonics now being recognized . MMX ; 686 and MMX mnemonics now being recognized . NOMMX ; 686 mnemonics still enabled
Segments
A segment is a collection of instructions or data whose addresses are all relative to the same segment register. The code in your assembler language program defines and organizes segments.
You can define segments by using segment directives or full segment definitions.
This section describes the following directives used to create and manage segments:
ALIGN
.CODE
.CONST
.DATA
.DATA?
DOSSEG
.DOSSEG
ENDS
EVEN
.FARDATA
.FARDATA?
GROUP
.MODEL
ORG
SEGMENT
.SEQ
.STACK
ALIGN (Align Code or Data Item)
Advances the current location counter to the next byte boundary that is a multiple of Expression.
Syntax
ALIGN Expression
Example
To align to a 2-byte boundary:
ALIGN 2
To align to a 4-byte boundary:
ALIGN 4
.CODE (Opens Default or Named Code Segment)
Closes the currently opened segment (if any) and opens the default code segment or a segment with the name given by an optional SegmentNameparameter. The .CODEdirective may only be used if previous .MODELdirective has been processed.
Syntax
. CODE [ SegmentName ]
Remarks
When the SegmentNameparameter is omitted from the .CODEdirective, the assembler generates a default code segment whose name is determined by the memory model as follows:
Memory Model Value for @code
TINY _TEXT
SMALL _TEXT
MEDIUM module_TEXT
COMPACT_TEXT
LARGE module_TEXT
HUGE module_TEXT
FLAT CODE32
The moduleentry is replaced with base file name of the top-level module being assembled.
When operating in M510mode, the SegmentNameparameter may only be specified for those memory models that allow multiple code segments (MEDIUM , LARGE, and HUGE), and the value of the @codesymbol is not altered from the default. For other modes of operation, the SegmentNameparameter is allowed for any model other than TINY, and the @codesymbol is updated to reflect the SegmentNamevalue.
.CONST (Opens Default Constant Data Segment)
When used with .MODEL, starts a constant data segment for initialized read- only data.
Syntax
. CONST
Remarks
The name of the segment is CONST32 in flat model, and CONST for all other models.
.DATA (Opens Default Data Segment)
When used with .MODEL, starts a near data segment for initialized data.
Syntax
. DATA
Remarks
The name of the segment is DATA32 in flat model, and _DATA for all other models.
.DATA? (Opens Default Uninitialized Data Segment)
When used with .MODEL, starts a near data segment for uninitialized data.
Syntax
. DATA ?
Remarks
The name of the segment is BSS32 in flat model, and _BSS for all other models.
.DOSSEG/DOSSEG (Specify Standard DOS Segment Ordering)
Orders the segments according to the DOS segment convention: CODE first, then segments not in DGROUP, and then segments in DGROUP. The segments in DGROUP follow this order:
1.Segments not in BSS or STACK
2.BSS segments
3.STACK segments
Syntax
. DOSSEG ( preferred form ) or DOSSEG
Remarks
.DOSSEGis the preferred form.
Use of this directive allows the linker to control the segment ordering according to conventions used in many high-level languages.
ENDS (Close a Segment, Structure, or Union Declaration)
Closes a program segment opened with SEGMENTdirective, or ends a structure or union definition opened with the STRUCTor UNIONdirectives. Every SEGMENT, STRUCT, and UNIONdirective must end with a corresponding ENDSdirective.
Syntax
Segment - Name ENDS or Structure - Name ENDS or Union - Name ENDS
Remarks
If the ENDSdirective is not used with the corresponding SEGMENT, STRUCT, or UNIONdirective, an error occurs. An unmatched ENDSalso causes an error.
Note:See the SEGMENT, STRUCT, and UNIONdirectives for more details and examples of the use of ENDS.
Example
CONST SEGMENT word public ' CONST ' SEG1 DW ARRAY _ DATA SEG2 DW MESSAGE _ DATA CONST ENDS
EVEN (Align Code or Data Item on an Even Boundary)
The EVENdirective causes the program counter to go to an even boundary (an address that begins a word). This ensures that the code or data that follows is aligned on an even boundary.
Syntax
EVEN
Remarks
If the program counter is not already at an even boundary, EVENcauses the assembler to add a NOP(no operation) instruction so that the counter reaches an even boundary. An error message occurs if EVENis used with a byte-aligned segment. If the program counter is already at an even boundary, EVENdoes nothing.
Example
Before: PC points to 0019 hex (25 decimal).
EVEN
After: PC points to 001A hex (26 decimal).
.FARDATA (Opens Default or Named Far Data Segment)
When used with .MODEL, starts a far data segment for initialized data.
Syntax
. FARDATA [ SegmentName ]
Remarks
If the SegmentNameparameter is not specified, the assembler sets it to FAR _DATA.
.FARDATA? (Opens Default or Named Uninitialized Far Data Segment)
When used with .MODEL, starts a far data segment for uninitialized data.
Syntax
. FARDATA ? [ SegmentName ]
Remarks
If the SegmentNameparameter is not specified, the assembler sets it to FAR _BSS.
GROUP (Treat Multiple Segments as a Single Unit)
The GROUPdirective associates a group Namewith one or more segments, and causes all labels and variables defined in the given segments to have addresses relative to the beginning of the group, rather than to the segments where they are defined.
Syntax
Name GROUP Segment - Name [ , . . . ]
Remarks
Each Segment-Nameentry must be a unique segment name assigned by the SEGMENTdirective. A Segment-Nameentry may be a forward reference to a subsequently declared segment name.
An additional occurrence of a given group Namein a subsequent GROUPdirective does not constitute a redefinition, but instead the effect is cumulative. The group Nameitself is declared the first time it appears in a GROUPdirective, but the group definition is not complete until the end of the source module is reached. The final group definition is the cumulative list of all unique segments named in all occurrences of a GROUPdirective for that group Name.
Segments in a group need not be contiguous. Segments that do not belong to the group can be loaded between segments that do belong to the group. The only restriction is that for USE16 segments the distance (in bytes) between the first byte in the first segment of the group and the last byte in the last segment must not exceed 65535 bytes.
Group names can be used with the ASSUMEdirective and as an operand prefix with the segment override operation (:).
Example
The following example shows how to use the GROUPdirective to combine segments:
In Module A:
CGROUP GROUP XXX , YYY XXX SEGMENT ASSUME CS : CGROUP . . . XXX ENDS YYY SEGMENT ASSUME CS : CGROUP . . . YYY ENDS
In Module B:
CGROUP GROUP ZZZ ZZZ SEGMENT ASSUME CS : CGROUP . . . ZZZ ENDS
The next example shows how to set DSwith the paragraph number of the group called DGROUP.
As immediate:
MOV AX , DGROUP MOV DS , AX
In assume:
ASSUME DS : DGROUP
As an operand prefix:
MOV BX , OFFSET DGROUP : FOO DW FOO DW DGROUP : FOO
Note:
1.DW FOOreturns the offset of the symbol within its segment.
2.DW DGROUP:FOOreturns the offset of the symbol within the group.
The next example shows how you can use the GROUPdirective to create a .COMfile type.
PAGE , 132 TITLE GRPCOM - Use GROUP to create a DOS . COM file ; Use the DOS EXE2BIN utility to convert GRPCOM . EXE to GRPCOM . COM . CG GROUP CSEG , DSEG ; ALL SEGS IN ONE GROUP DISPLAY MACRO TEXT LOCAL MSG DSEG SEGMENT BYTE PUBLIC ' DATA ' MSG DB TEXT , 13 , 10 , " $ " DSEG ENDS ; ; Macro produces partly in DSEG , ; ; partly in CSEG MOV AH , 9 MOV DX , OFFSET CG : MSG ; ; Note use of group name ; ; in producing offset INT 21H ENDM DSEG SEGMENT BYTE PUBLIC ' DATA ' ; Insert local constants and work areas here DSEG ENDS CSEG SEGMENT BYTE PUBLIC ' CODE ' ASSUME CS : CG , DS : CG , SS : CG , ES : CG ; SET BY LOADER ORG 100H ; Skip to end of the PSP ENTPT PROC NEAR ; COM file entry at 0100H DISPLAY " USING MORE THAN ONE SEGMENT " DISPLAY " YET STILL OBEYING . COM RULES " RET ; Near return to DOS ENTPT ENDP CSEG ENDS END ENTPT
.MODEL (Define Program Memory Segmentation Model)
The .MODELdirective establishes a predefined set of definitions, conventions, and modifications to various default operating behaviors of the assembler. These adjustments are designed to simply certain programming tasks and to allow a more seamless integration with routines written in high level languages.
Syntax
. MODEL Memory - Model [ , Language - Type ] [ , OS - Type ] [ , Stack - Distance ]
Memory-Model:
TINY
SMALL
COMPACT
MEDIUM
LARGE
HUGE
FLAT
Language-Type:
BASIC
C
FORTRAN
OPTLINK
PASCAL
STDCALL
SYSCALL
OS-Type:
OS_DOS
OS_OS2
Stack-Distance:
FARSTACK
NEARSTACK
Remarks
The .MODELdirective should be placed at the top of the file, after any processor controldirectives, but before any of the following simplified segmentation directives are encountered:
�.CODE
�.CONST
�.DATA
�.DATA?
�.FARDATA
�.FARDATA?
�.STACK
Each of these directives close any segment that is currently opened, then open a different segment whose name and attributes are determined by the Memory-Modelargument.
Memory-Model
The fundamental purpose of establishing a programming memory model is to define how the program will be organized within the constraints of the segmented processor architecture. It defines whether there are single or multiple default code and data segments, or whether the default code and data segments are merged into a single segment. The operating system upon which the program will run is a determining factor of which memory models can be used. The following table describes these relationships.
/------------------------------------------------------------\ |Memory |Default |Default |Merged? |Operating Systems | |Model |Code |Data | | | |--------+--------+--------+--------+------------------------| |Tiny |Near |Near |Yes |DOS | |--------+--------+--------+--------+------------------------| |Small |Near |Near |No |DOS, 16-Bit OS/2, Win16 | |--------+--------+--------+--------+------------------------| |Medium |Far |Near |No |DOS, 16-Bit OS/2, Win16 | |--------+--------+--------+--------+------------------------| |Compact |Near |Far |No |DOS, 16-Bit OS/2, Win16 | |--------+--------+--------+--------+------------------------| |Large |Far |Far |No |DOS, 16-Bit OS/2, Win16 | |--------+--------+--------+--------+------------------------| |Huge |Far |Far |No |DOS, 16-Bit OS/2, Win16 | |--------+--------+--------+--------+------------------------| |Flat |Near |Near |Yes |32-Bit OS/2, Win32 | \------------------------------------------------------------/
The assembler creates the default code and data segments, then automatically generates an ASSUMECS:@codeand an ASSUMEDS:@datastatement to refer to them.
Language-Type
Specifies the default naming convention for all public identifiers written that to the object file, and the method whereby parameters are passed to procedures (the calling convention). See the section on the PROCdirective for a detailed explanation of the effects of the Language-Typesetting.
OS-Type
This parameter identifies the target operating system upon which the program will run, and is provided for compatibility with other assemblers. ALP ignores this parameter.
Stack-Distance
The NEARSTACKparameter causes the assembler to assume that the stack segment and the default data segment are the same, and that the DS register is equal to the SS register. This is the default setting. The assembler performs an automatic ASSUMESS:@datastatement when a near stack is used.
The FARSTACKparameter causes the assembler to assume that the stack is in a different physical segment from that of the default data, and that SS register is not equal to DS. This is typically the case for code in a 16- bit dynamic link library that must use the caller's stack. The assembler performs an automatic ASSUMESS:STACK when this keyword is used.
ORG (Adjust Segment Location Counter)
The ORGdirective sets the location counter to the value of Expression. Subsequent instructions are generated beginning at this new location.
Syntax
ORG Expression
Remarks
The assembler must know all names used in Expressionon pass 1, and the value must be either absolute or in the same segment as the location counter.
The numeric value of Expressionmust not be a quantity larger than that which is representable by an unsigned integer having the same word size as the current segment.
You can use the current address operator ($) to refer to the current value of the location counter.
Example
ORG 120H ORG $ + 2 ; SKIP NEXT 2 BYTES
To conditionally skip to the next 256-byte boundary:
CSEG SEGMENT PAGE BEGIN = $ . . . IF ( $ - BEGIN ) MOD 256 ; IF NOT ALREADY ON 256 BYTE BOUNDARY ORG ( $ - BEGIN ) + 256 - ( ( $ - BEGIN ) MOD 256 ) ENDIF
SEGMENT (Open a Program Information Segment)
Defines or reopens a segment called Segment-Namewhich will contain all subsequently emitted code or data.
Syntax
Segment - Name SEGMENT [ align ] [ combine ] [ use ] [ ' class ' ]
Remarks
A segment definition may be followed by zero or more segment attributes, at most one from each of the following selections:
alignInstructs the linker to align the segment at the next alignboundary. One of:
BYTEThe next 8-bit boundary.
DWORDThe next 32-bit boundary.
PAGEThe next 256-byte boundary (4096 under 32-bit OS/2).
PARAThe next 16-byte boundary (default).
WORDThe next 16-bit boundary.
combineControls how the linker will combine this segment with identically- named segments from other modules. One of:
ATaddressLocates the segment at the absolute paragraph given by address.
COMMONUnioned with segments from other modules.
PRIVATEWill not be combined with other segments (default).
PUBLICConcatenated to segments from other modules.
STACKConcatenated to segments from other modules. At load time:
SS=beginning of segment
SS:(E)SP=end of segment
useWord size of the segment.
USE16The segment will have a 16-bit word size.
USE32The segment will have a 32-bit word size.
'class'Instructs the linker to order segments according to the class name given by class. Segments will not be combined if their class names differ.
.SEQ (Specifies Sequential Segment Ordering)
Orders segments sequentially (the default order).
Syntax
. SEQ
.STACK (Defines Default Stack Segment With Optional Size)
When used with .MODEL, defines a stack segment with the segment name STACK. The optional Sizespecifies the number of bytes for the stack (default 1024 ).
Syntax
. STACK [ Size ]
Remarks
The .STACKdirective does not leave the stack segment open when the statement is completed, since it is not a common practice to emit initialized data into the stack segment.
The name of the segment is STACK32 in flat model, and STACK for all other models.
Type Definition
Type definition directives allow the creation of user-defined data types.
This section describes the following type definition directives:
RECORD
STRUCT/STRUC
TYPEDEF
UNION
RECORD (Define a Record Type Name)
A record is a bit pattern you define to format bytes, words, or dwords for bit-packing. The RecordNamebecomes a Record-TypeNamethat can be used create record variables.
Syntax
RecordName RECORD FieldDeclaration [ , [ LineBreak ] FieldDeclaration . . . ]
Where FieldDeclarationhas the following form:
FieldName : Width [ = InitialValue ]
The optional LineBreakentry allows you to end a FieldDeclarationwith a comma, enter an optional EndOfLine-Commentfollowed by a physical NewLinecharacter, then continue the record definition on the next line.
Remarks
The RecordNameand FieldNameentries are unique globally-scoped Identifiersthat must be specified. Upon successful processing of the RECORDdefinition, the RecordNameentry is converted to a Record-TypeName, and all FieldNamesare converted to Record-FieldNames.
Each Widthentry in a FieldDeclarationis specified as an Expressionwhich must evaluate to an Absolute-ExpressionType. The cumulative value of all Widthentries becomes the total RecordWidthand must not exceed 32, the size of a DWORD, the maximum size for a Record-TypeName. The Operand Sizeof the record becomes 1 (BYTE) if the RecordWidthis from 1 through 8, 2 ( WORD) if the RecordWidthis from 9 through 16, and 4 (DWORD) if the RecordWidthis from 17 through 32. Any other value causes an error. If the total number of bits in the RecordWidthis not evenly divisible by the Operand Size, the assembler right-justifies the fields into the least- significant bit positions of the record.
When a Record-FieldNameis referenced in an expression, the value returned is the shift value required to access the field. The WIDTHoperator is used on the Record-FieldNameto return the width of the field in bits, and the MASKoperator is used to obtain the value necessary for isolating the field within the record.
The InitialValueentry contains the default value to used for the field when a record variable is allocated. If the field is at least 7 bits wide, you can initialize it to an ASCII character (for example, FIELD:7='Z').
To initialize a record, use the form:
[ Identifier ] Record - TypeName Expression [ , Expression . . . ]
The Identifierentry is an optional name for the first byte, word, or dword of the reserved memory. The Record-TypeNamedefines the format and default field values, and is the RecordNameyou assigned to the record in the RECORDdirective.
At least one Expressionentry must be specified; additional entries are optional. The Expressionmust resolve to a Compound-ExpressionType, which may also be be duplicated by specifying it as a sub-expression of a Duplicated-ExpressionType. Each Compound-ExpressionTyperepresents a single allocated record entry; each explicit sub-expression of the Compound -ExpressionTyperepresents a field value which overrides the default InitialValuefor the field given in the record definition.
Example
Define the record fields; begin with the most significant fields first:
MODULE RECORD R : 7 , ; First field . " , LineBreak " syntax E : 4 , ; may be used to split RECORD D : 5 ; definition across multiple lines
Fields are 7 bits, 4 bits, and 5 bits; the assembler gives no default value . Most significant byte first, this looks like:
RRRR RRRE EEED DDDD
To reserve its memory:
STG _ FLD MODULE < 7 , , 2 > ; Initializer is a Compound - ExpressionType
This defines R=7 and D=2 and leaves E unknown; it produces 2 bytes, the least significant byte first:
02 0E
Define the record fields:
AREA RECORD FLA : 8 = ' A ' , FLB : 8 = ' B '
To reserve its memory:
CHAR _ FLD AREA < , ' P ' >
This defines FLA='A' (the default) and changes FLB='P'.
To use a field in the record:
DEFFIELD RECORD X : 3 , Y : 4 , Z : 9 . . . TABLE DEFFIELD 10 DUP ( < 0 , 2 , 255 > ) . . . MOV DX , TABLE [ 2 ] ; Move data from record to register ; other than segment register AND DX , MASK Y ; Mask out fields X and Y ; to remove unwanted fields ; The MASK of Y equals 1E00H ; 00011111000000000B ( 1E00H ) Is the value MOV CL , Y ; Get shift count ; 9 is the value SHR DX , CL ; Field to low - order ; bits of register , DX is now ; equal to the value of field Y MOV CL , WIDTH Y ; Get number of bits ; in field - 4 is the value , ; the WIDTH of Y is 4
STRUCT/STRUC (Define a Structure Type Name)
Defines a Structure-TypeNamethat represents an aggregatedata type containing one or more fields.
Syntax
Structure - Name STRUCT FieldDeclaration . . . Structure - Name ENDS
Where FieldDeclarationhas the following form:
[ FieldName ] Allocation - TypeName InitialValue [ , InitialValue . . . ]
Remarks
The obsolete spelling for the STRUCTdirective is STRUC.
The syntax for the FieldDeclarationis that of a normal data allocation statement. See the section on Data Allocationfor a full description of this syntax.
The various parts of the FieldDeclarationare described as follows:
FieldNameEach FieldNameentry is converted to Structure-FieldNamewhen processing of the structure definition is complete. If this field is omitted and the Allocation-TypeNameresolves to a Structure-TypeNameor Union-TypeName, then all of the fields defined within the imbedded structure or union are promotedto be visible at the same level as other FieldNameentries in the current structure given by the Structure-Name.
Allocation-TypeNameThe allowable values for this field are described in detail in the Data Allocationsection. In modes other than M510, the assembler accepts imbedded occurrences of other structures or unions by specifying an identifier that resolves to a Structure-TypeNameor Union- TypeNamein this field.
InitialValueThe InitialValuefield must be an Expressionthat resolves to an ExpressionTypeappropriate for the Allocation-TypeNameutilized in the FieldDeclaration. The InitialValueexpressions become part of the structure type definition. These values are used as default initializers when an instance of the structure is allocated and no explict override values are specified for a particular field.
Example
Define a Structure-TypeNamecalled Numbers:
Numbers STRUCT One DB 0 Two WORD 0 BYTE 3 Four DWORD ? Numbers ENDS
Allocate a structure variable called Valuesusing the NumbersStructure- TypeName, overriding the One, Two,and FourStructure-FieldNameentries with explicit values, and the third (unnamed) entry is initialized with the default InitialValueinherited from the FieldDeclaration:
Values Numbers < 1 , 2 , , 4 >
TYPEDEF (Create a User-Defined Type Name)
Defines a Typedef-TypeNamethat is an alias for another type declaration.
Syntax
TypeName TYPEDEF Type - Declaration
Remarks
The TypeNameentry is a unique globally-scoped Identifierthat must be specified. Upon successful processing of the TYPEDEFdirective, the TypeNameentry is converted to a Typedef-TypeNamewhich can then be used in expressions or as a directive in data allocation statements.
The TYPEDEFdirective can be used to create a direct alias for another intrinsic type (a Scalar-TypeName, Record-TypeName, Structure-TypeName, Union-TypeName, or other Typedef-TypeName), a pointer to another type, or it can be used to create vector types (arrays).
Examples
The following are examples of TYPEDEFusage:
CHAR typedef byte ; CHAR is an alias for intrinsic type PCHAR typedef ptr CHAR ; PCHAR is a pointer to CHAR BUFFER _ T struct pLetter PCHAR ? ; current position in buffer Letters CHAR " ABCDEF " , 0 ; array of characters BUFFER _ T ends BUFFER typedef BUFFER _ T ; alias for intrinsic type PBUFFER typedef ptr BUFFER _ T ; pointer to the BUFFER type DATA SEGMENT HexChars BUFFER < > ; allocate structure via typedef pHexChars PBUFFER offset HexChars ; point to the allocated structure DATA ENDS
UNION (Define a Union Type Name)
Defines a Union-TypeNamethat represents an aggregatedata type containing one or more fields. All of the fields occupy the same physical position in storage.
Syntax
Union - Name UNION FieldDeclaration . . . Union - Name ENDS
Where FieldDeclarationhas the following form:
[ FieldName ] Allocation - TypeName InitialValue [ , InitialValue . . . ]
Remarks
This directive is not available in M510mode.
The syntax for the FieldDeclarationis that of a normal data allocation statement. See the section on Data Allocationfor a full description of this syntax.
The various parts of the FieldDeclarationare described as follows:
FieldNameEach FieldNameentry is converted to Union-FieldNamewhen processing of the union definition is complete. If this field is omitted and the Allocation-TypeNameresolves to a Structure-TypeNameor Union- TypeName, then all of the fields defined within the imbedded structure or union are promotedto be visible at the same level as other FieldNameentries in the current union given by the Union-Name.
Allocation-TypeNameThe allowable values for this field are described in detail in the Data Allocationsection. The assembler accepts imbedded occurrences of other structures or unions by specifying an identifier that resolves to a Structure-TypeNameor Union-TypeNamein this field.
InitialValueThe InitialValuefield must be an Expressionthat resolves to an ExpressionTypeappropriate for the Allocation-TypeNameutilized in the FieldDeclaration. Only the InitialValueexpression for the first field becomes part of the union type definition; expressions specified for the remaining fields are ignored. This value is used as the default initializer when an instance of the union is allocated and no explict override value is specified for the field.
Example
. 386 IS _ sint32 equ - 4 IS _ sint16 equ - 2 IS _ sint8 equ - 1 NO _ TYPE equ 0 IS _ uint8 equ 1 IS _ uint16 equ 2 IS _ uint32 equ 4 TYPE _ T typedef SBYTE DATA _ T union uint8 BYTE ? sint8 SBYTE ? uint16 WORD ? sint16 SWORD ? uint32 DWORD ? sint32 SDWORD ? DATA _ T ends VALUE _ T struct DataType TYPE _ T NO _ TYPE DataValue DATA _ T { } VALUE _ T ends . data Value VALUE _ T { IS _ uint8 , { 1 } } ; unsigned 8 - bit value of 1 . code ; Procedure : IsNegative ; Returns : 1 in EAX if Value . DataValue holds a negative number ; 0 in EAX if Value . DataValue holds a positive number IsNegative proc cmp Value . DataType , NO _ TYPE ; check sign of TYPE _ T jns short Positive ; if positive , so is value ; check for signed 8 - bit integer cmp Value . DataType , IS _ sint8 jne short @ F ; not 8 , check for 16 movsx EAX , Value . DataValue . sint8 ; convert 8 bits to 32 jmp short Check ; and check the value ; check for signed 16 - bit integer @ @ : cmp Value . DataType , IS _ sint16 jne short @ F ; not 16 , check for 32 movsx EAX , Value . DataValue . sint16 ; convert 16 bits to 32 jmp short Check ; and check the value ; check for signed 32 - bit integer @ @ : cmp Value . DataType , IS _ sint32 jne short Positive ; unknown , assume positive mov EAX , Value . DataValue . sint32 ; get full 32 bit number Check : or EAX , EAX ; check for negative value jns short Positive ; no sign bit , positive mov EAX , 1 ; indicate negative ret ; and return Positive : mov EAX , 0 ; indicate positive ret ; and return IsNegative endp end
Miscellaneous
This section describes the following miscellaneous directives:
=
.ABORT
ASSUME
EQU
LABEL
OPTION
.RADIX
= (Assign an Expression to an Assembler Variable)
The = directive lets you create a symbolic assembler-time variable. Numeric expressions may be assigned to the variable as many times as necessary.
Syntax
Name = Expression
Remarks
The =directive is similar to the EQUassembler directive except you can redefine Namewithout causing an error condition. However, the = directive is more restrictive about the allowable ExpressionTypesthat can be utilized in the Expressionfield, and it cannot be used to create Text- EquateNames.
Nameis a globally-scoped Identifier. The Expressionentry must evaluate to an Operand-ExpressionType. If an evaluation error occurs, or if the Expressionreferences an external identifier, or if the Expressionevaluates to one of the following Operand-ExpressionTypes:
�Indexed-ExpressionType
�Register-ExpressionType
�Floating-Point-ExpressionType
�Compound-ExpressionType
�Duplicated-ExpressionType
then an error message is issued and the assignment does not take place. Otherwise, the Identifieris converted to a Numeric-EquateName.
See also the EQUassembler directive and the EQUpreprocessor directive.
Example
EMP = 6 ; Establish as redefineable numeric equate EMP EQU 6 ; OK , value is the same , EMP remains redefinable EMP EQU 7 ; Error , can ' t change value with EQU EMP = 7 ; OK , EMP is redefineable with = EMP = EMP + 1 ; Can refer to its previous definition
Note:The Expression-Attributesinherited from the Expressionduring an assignment are not retained in subsequent assignments. For example:
VECTOR = WORD PTR 4 ; Type - Declaration attribute MOV [ BX ] , VECTOR ; Store the 4 as a word VECTOR = 6 ; Type - Declaration attribute discarded MOV [ BX ] , VECTOR ; Error , no size for operands
.ABORT (Terminate the Assembly)
Terminates the assembly at the point where the .ABORTdirective is encountered. The remainder of the input stream is not read.
Syntax
. ABORT
Remarks
The .ABORTdirective is only available in ALPmode
ASSUME (Inform Assembler of Register Contents)
The ASSUMEdirective establishes an assembly-time association between a machine register and a program object or data type. By informing the assembler of the type of information to which a register points, certain programming tasks can be simplified and the assembler can perform some operations automatically.
Syntax
ASSUME Association [ , Association . . . ]
Association:
Segment-Register-Assocation
General-Purpose-Register-Assocation
NOTHING
Segment-Register-Association:
Segment-Register: Expression
Segment-Register: NOTHING
General-Purpose-Register-Association:
General-Purpose-Register: Type-Declaration
General-Purpose-Register: NOTHING
Remarks
If the NOTHINGkeyword is specified for the Associationfield, all register associations are cancelled.
If the NOTHINGkeyword is specified for a particular Segment-Registeror General-Purpose-Register, only the association for that register is cancelled.
The following sections describe the two types of register associations:
�General-Purpose-Register-Association
Segment Register Association
A Segment-Register-Associationestablishes an assembly-time association between a Segment-Registerand an expression that resolves to a GroupNameor SegmentName. It allows the programmer to describe for the assembler what values are held in the segment registers at program run-time.
When the user program executes, all instructions that access memory do so through a particular segment register. To generate the correct encoding for an instruction that accesses a memory location, the assembler must know which segment register will be used in the effective memory address. In general, accessing a memory location from within a user program is done by referencing a named variable defined within a particular named segment.
Before accessing a named program variable (in a named memory segment), it is the programmer's responsibility to insure that the desired segment register actually references the correct physical segment at program run- time. Unless the ASSUMEdirective is used to describe this association, the assembler has no way of knowing whichsegment register (if any) is addressing a named segment when a reference to a named variable contained therein is encountered. In this situation, the programmer is forced to use the Segment Override (: Operator)in every instruction to "reach" the desired variable and cause the assembler to generate the proper instruction encoding. The association established by the ASSUMEdirective allows the assembler to take over the task of verifying memory references and generating the appropriate instructions.
If you temporarily use a segment register to contain a value other than the segment or group identified in the ASSUMEassociation, then you should reflect the change with a new ASSUMEstatement, or cancel the association with an ASSUME xS:NOTHINGconstruct.
When the contents of a segment register are used for addressability, the register value should never contradict the association established for that register.
When the Referencedirective is utilized and the program is designed to follow the conventions that it establishes, the ASSUMEdirective is no longer needed in most cases.
Example
Data SEGMENT Stuff WORD 0 Data ENDS Code SEGMENT ASSUME NOTHING ; Cancel all register assumptions mov ax , Data ; Load general - purpose register with segment frame , mov DS , ax ; then establish addressablity through DS mov ES , ax ; and ES . The assembler doesn ' t " know " this yet mov Stuff , 1 ; Error , can ' t reach Stuff ASSUME ES : Data ; Associate ES register with Data segment add Stuff , bx ; Now we can reach Stuff , but the assembler needs ; to generate an ES override instruction byte ASSUME DS : SEG Stuff ; Expression to extract the segment value of Stuff ; This has the same effect as ASSUME DS : Data ; Now both DS and ES are associated with Data add Stuff , cx ; This time , the instruction doesn ' t need an ; override byte because DS is the default ; register for normal accesses to memory ASSUME DS : NOTHING ; Cancel the association between DS and Data add Stuff , dx ; Once again , the ES override is generated add DS : Stuff , dx ; Must use " force " if we want the default encoding Code ends end
Warning:
If an ASSUME CS:Expressionis placed before the code segment it is referencing, the assembler will ignore the ASSUME. The ASSUME CS:Expressionstatement must follow the SEGMENTdefinition statement of the code segment it is referencing.
The ASSUMEstatement for the CSregister should be placed immediately following the code SEGMENTstatement, before any labels are defined in that code segment.
General-Purpose Register Association
A General-Purpose-Register-Associationestablishes an assembly-time association between a General-Purpose-Registerand a Type-Declaration. It allows the programmer to describe for the assembler what type of data is being held in the general purpose register at program run-time.
This feature can be very useful when the programmer is treating a general- purpose register as a "pointer" to a particular type of storage. If this " pointer" is being utilized many times in the program, (perhaps changing in value but never in the type of data to which it points), the ASSUMEdirective can be used to associate the register with the type of data to which it points. This frees the programmer from having to use an explicit Type Conversion (PTR Operator)every time the register is used to access memory.
A register may only be associated with a data type whose operand size matches that of the register. For instance, the following construct is illegal:
ASSUME EBX : BYTE ; Error , EBX is a DWORD register
The most useful situation is for the register to contain a pointer to another data type. In this situation, the Indirection ([] Operator)may be used store or retrieve data through the register without the need for an explicit conversion operation:
ASSUME EDI : NOTHING ; This is the assembler default setting MOV [ EDI ] , 1 ; What is the size supposed to be ? MOV byte ptr [ EDI ] , 1 ; Fixes the problem , but this can get tiring ASSUME EDI : PTR BYTE ; EDI is now a pointer to a byte MOV [ EDI ] , 1 ; assembler knows what to do with this now INC [ EDI ] ; and this too
The following constructs are legal but not particularly useful since they simply restate what is already known about the registers (the operand size) , and the assembler doesn't enforce a strict level of type checking against register operands:
ASSUME ECX : SDWORD ; Signed double - word matches size of ECX ASSUME EBX : DWORD ; Unsigned double - word matches size of EBX MOV ECX , 0FFFFEEEEh ; Register type - checking is not strict MOV EBX , - 1 ; enough to flag these as errors
In fact, any data type that matches the size of the register may be used; the assembler checks the sizes and reports mismatches, but effectively ignores any settings that are not pointers to other types. Consider the following example:
STRUCT _ T STRUCT One BYTE 1 Two BYTE 2 Three BYTE 3 Four BYTE 4 STRUCT _ T ENDS ASSUME EBX : STRUCT _ T ; Ok , STRUCT _ T is 4 bytes in size MOV EBX , - 1 ; Legal , but not very meaningful . . . ; A more useful situation ( given that EBX is now holding data of type ; STRUCT _ T ) would be for the assembler to allow the following notation : MOV EBX , { 4 , 3 , 2 , 1 } ; Hypothetical ( UNSUPPORTED ! ) syntax . . . ; It would also be nice at this point if the symbolic debugger could ; show us the value of EBX in the appropriate format , but the assembler ; does not support the emitting of context - sensitive symbolic debugging ; information .
EQU (Assign an Expression to a Symbolic Constant)
The EQUdirective assigns the value of Expressionto Name.
Syntax
Name EQU Expression
Remarks
If Namehas already been defined as a Numeric-EquateNameand its currently assigned value differs from the value given by Expression, an error message is produced. Unlike symbols created with the = (equal sign) directive, symbols created with the EQUdirective cannot be redefined with different values.
The Expressionentry must evaluate to an Operand-ExpressionType. If an evaluation error occurs or if the Expressionevaluates to one of the following Operand-ExpressionTypes:
�Indexed-ExpressionType
�Floating-Point-ExpressionType
�Compound-ExpressionType
�Duplicated-ExpressionType
then the Identifieris converted to a Text-EquateName. Otherwise, the Identifieris converted to a Numeric-EquateName.
Example
A EQU < BP + > ; explicit text literal , A is a text equate B EQU BP + ; invalid expression - text equate equivalent to A B EQU 1 + 2 ; valid expression - but still a text equate < 1 + 2 > C EQU 1 + 2 ; converted to assembler symbolic constant , value = 3 C EQU < 3 > ; illegal , cannot convert back to text equate
LABEL (Associate a Symbolic Name With Current Address)
The LABELdirective defines the following attributes of Name:
�Segment: current segment being assembled
�Offset: current position within this segment
�Type: the operand of the LABELdirective
Syntax
Name LABEL Type - Declaration or Name : or Name : :
Remarks
The LABELdirective provides a method of labeling a memory location and assigning it a type without allocating any storage. It can be used to create multiple labels of differing types that are aliases for the same memory location.
The Nameentry is an Identifierthat is converted to a LabelNameaccording to the value given by Type-Declaration. See the section on label namesfor more information on the details of this conversion.
The :and ::forms of this directive are used for defining code labels. In this case, the Nameentry is converted to a Target-LabelName. The double- colon form of the directive is used when the Namemust be visible outside of the procedure block in which it is defined.
Example
To refer to a data area but use a length different from the original definition of that area:
BARRAY LABEL BYTE ARRAY DW 100 DUP ( 0 ) . . . ADD AL , BARRAY [ 99 ] ; ADD 100th BYTE TO AL ADD AX , ARRAY [ 98 ] ; ADD 50th WORD TO AX
To define multiple entry points within a procedure:
SUBRT PROC FAR . . . SUB2 LABEL FAR ; Should have same attribute as containing PROC . . . RET SUBRT ENDP
OPTION (Modify Default Behaviors)
The OPTIONdirective allows the user to alter certain default behaviors of the assembler, normally to provide backward compatibility with older assemblers. The OPTIONdirective is not available when assembling in M510mode.
Syntax
OPTION Option - Item [ , [ LineBreak ] Option - Item . . . ]
Remarks
The Option-Itemarguments are defined as follows (the underlined keywords denote the default values):
DOTNAME| NODOTNAMEAllows user identifiers to begin with an introductory dot (.) character.
EXPR16| EXPR32Specifies whether expressions are evaluated using 16-bit or 32-bit arithmetic. Some programs may require reverting back to EXPR16in order to assemble without problems. Once this value has been set it cannot be changed. The use of a processor selection directive to select a 32-bit processor is equivalent to selecting OPTION EXPR32, which prevents any further attempt to select OPTION EXPR16.
LANGUAGE:Language-NameSpecifies the default language type for identifiers with PUBLICor EXPORTvisibility. This option overrides any setting given in the .MODELdirective.
OFFSET:Offset-TypeDetermines how relocatable offset values are written to the object file output, encoded in the form of a linker "fixup" record. The possible values for Offset-Typeare SEGMENT, GROUP, and FLAT.
OLDSTRUCTS| NOOLDSTRUCTSThe OLDSTRUCTSkeyword causes structure field names to become global identifiers rather than local names private to the structure type. It also prevents the Structure/Union Field Selection (. Operator)from performing strict checking on its operands, requiring its left operand to have a structure type and its right operand to be the name of a field contained therein.
PROC:VisibilitySpecifies the default visibility for procedure names. This can be one of PRIVATE, PUBLIC, or EXPORT.
SCOPED| NOSCOPEDThe NOSCOPEDkeyword forces all code label names defined within procedures to be visible to the entire module and not just from within the defining procedure.
SEGMENT:Address-SizeExplicitly sets the default address size value. This is used to control the address size of segments that are opened without explict USE16or USE32keywords, and of global identifiers that are declared outside of segment boundaries. The possible values for Address- Sizeare USE16, USE32, and FLAT.
.RADIX (Set the Default Base for Numeric Literals)
The .RADIXdirective lets you change the default RADIX(decimal) to base 2, 8, 10, or 16.
Syntax
. RADIX Expression
Remarks
The Expressionentry is in decimal radix regardless of the current radix setting.
The .RADIXdirective does not affect real numbers initialized as variables with DD, DQ, or DT.
When using .RADIX 16, be aware that if the hex constant ends in either B or D, the assembler thinks that the B or D is a request to cancel the current radix specification with a base of binary or decimal, respectively. In such cases, add the H base override (just as if .RADIX 16were not in use).
Example
The statement:
. RADIX 16 DW 120B
produces an error because 2 is not a valid binary number. The correct specification is:
DW 120BH
The following example:
. RADIX 16 DW 89CD
also produces an error because C is not a valid decimal number. The correct specification is:
DW 89CDH
The dangerous case is when no error is produced. For example:
. RADIX 16 DW 120D
produces a constant whose value is 120 decimal, not '120D' hex, which might have been the intended value.
The following two move instructions are the same:
MOV BX , OFFH . RADIX 16 MOV BX , OFF
The following example:
. RADIX 8 DQ 19 . 0 ; Treated as decimal
produces a constant whose value is 19 decimal because 19.0 is a real number . However, if you leave off the decimal point, the following:
. RADIX 8 DQ 19 ; uses current radix
produces a syntax error because nine is not a valid number in .RADIX 8.
Processor Reference
This chapter presents an overview of the instruction set and lists the complete instruction set in alphabetical order. For each instruction, the forms are given for each operand combination, including object code produced, operands required, execution time, and a description. For each instruction, there is an operational description and a summary of exceptions generated.
Intel Instruction Set Overview
This section contains an introduction to the Intel instruction set and presents the terminology necessary to understand the encoding and operation of each individual instruction.
Operand-Size and Address-Size Attributes
When executing an instruction, the processor can address memory using either 16 or 32-bit addresses. Consequently, each instruction that uses memory addresses has associated with it an address-size attribute of either 16 or 32 bits. The use of 16-bit addresses implies both the use of 16-bit displacements in instructions and the generation of 16-bit address offsets (segment relative addresses) as the result of the effective address calculations. 32-bit addresses imply the use of 32-bit displacements and the generation of 32-bit address offsets. Similarly, an instruction that accesses words (16 bits) or doublewords (32 bits) has an operand-size attribute of either 16 or 32 bits.
The attributes are determined by a combination of defaults, instruction prefixes, and (for programs executing in protected mode) size-specification bits in segment descriptors.
Default Segment Attribute
For programs running in protected mode, the D bit in executable-segment descriptors specifies the default attribute for both address size and operand size. These default attributes apply to the execution of all instructions in the segment. A clear D bit sets the default address size and operand size to 16 bits; a set D bit, to 32 bits.
Programs that execute in real mode or virtual-8086 mode have 16-bit addresses and operands by default.
Operand-Size and Address-Size Instruction Prefixes
The internal encoding of an instruction can include two byte-long prefixes: the address-size prefix, 67H, and the operand-size prefix, 66H. (A later section, "Instruction Format," shows the position of the prefixes in an instruction's encoding.) These prefixes overridethe default segment attributes for the instruction that follows. The following table shows the effect of each possible combination of defaults and overrides.
Effective Size Attributes
/--------------------------------------------------------------------\ |Segment Default D = ... |0 |0 |0 |0 |1 |1 |1 |1 | |----------------------------+----+----+----+----+----+----+----+----| |Operand-Size Prefix 66H |N |N |Y |Y |N |N |Y |Y | |----------------------------+----+----+----+----+----+----+----+----| |Address-Size Prefix 67H |N |Y |N |Y |N |Y |N |Y | |----------------------------+----+----+----+----+----+----+----+----| |Effective Operand Size |16 |16 |32 |32 |32 |32 |16 |16 | |----------------------------+----+----+----+----+----+----+----+----| |Effective Address Size |16 |32 |16 |32 |32 |16 |32 |16 | \--------------------------------------------------------------------/
Y = Yes, this instruction prefix is present
N = No, this instruction prefix is not present
Address-Size Attribute for Stack
Instructions that use the stack implicitly (for example: POP EAX) also have a stack address-size attribute of either 16 or 32 bits. Instructions with a stack address-size attribute of 16 use the 16-bit SP stack pointer register; instructions with a stack address-size attribute of 32 bits use the 32-bit ESP register to form the address of the top of the stack.
The stack address-size attribute is controlled by the B bit of the data- segment descriptor in the SS register. A value of zero in the B bit selects a stack address-size attribute of 16; a value of one selects a stack address-size attribute of 32.
Instruction Format
All instruction encodings are subsets of the general instruction format shown in the following figure. Instructions consist of optional instruction prefixes (in any order), one or two primary opcode bytes, possibly an address specifier consisting of the ModR/M byte and the SIB (Scale Index Base) byte, a displacement, if required, and an immediate data field, if required.
Instruction Format /-------------------------------------------------------------\ | /----------------------------------------------------\ | | | INSTRUCTION | ADDRESS- | OPERAND- | SEGMENT | | | | PREFIX | SIZE PREFIX |SIZE PREFIX | OVERRIDE | | | |----------------------------------------------------| | | | 0 OR 1 0 OR 1 0 OR 1 0 OR 1 | | | |----------------------------------------------------| | | | | | | | NUMBER OF BYTES | | | \----------------------------------------------------/ | | | | /----------------------------------------------------\ | | | OPCODE | MODR/M | SIB | DISPLACEMENT | IMMEDIATE | | | |----------------------------------------------------| | | | 1 OR 2 0 OR 1 0 OR 1 0,1,2 OR 4 0,1,2 OR 4| | | |----------------------------------------------------| | | | NUMBER OF BYTES | | | \----------------------------------------------------/ | \-------------------------------------------------------------/
Smaller encoding fields can be defined within the primary opcode or opcodes . These fields define the direction of the operation, the size of the displacements, the register encoding, or sign extension; encoding fields vary depending on the class of operation.
Most instructions that can refer to an operand in memory have an addressing form byte following the primary opcode byte(s). This byte, called the ModR/ M byte, specifies the address form to be used. Certain encodings of the ModR/M byte indicate a second addressing byte, the SIB (Scale Index Base) byte, which follows the ModR/M byte and is required to fully specify the addressing form.
Addressing forms can include a displacement immediately following either the ModR/M or SIB byte. If a displacement is present, it can be 8-, 16- or 32-bits.
If the instruction specifies an immediate operand, the immediate operand always follows any displacement bytes. The immediate operand, if specified, is always the last field of the instruction.
Zero or one bytes are reserved for each group of prefixes. The prefixes are grouped as follows:
1.Instruction Prefixes: REP, REPE/REPZ, REPNE/REPNZ, LOCK
2.Segment Override Prefixes: CS, SS, DS, ES, FS, GS
3.Operand Size Override
4.Address Size Override
For each instruction, one prefix may be used from each group. The effect of redundant prefixes (more than one prefix from a group) is undefined and may vary from processor to processor. The prefixes may come in any order.
The following are the allowable instruction prefix codes:
F3H REP prefix (used only with string instructions) F3H REPE/REPZ prefix (used only with string instructions) F2H REPNE/REPNZ prefix (used only with string instructions) F0H LOCK prefix
The following are the segment override prefixes:
2EH CS segment override prefix 36H SS segment override prefix 3EH DS segment override prefix 26H ES segment override prefix 64H FS segment override prefix 65H GS segment override prefix 66H Operand-size override 67H Address-size override
ModR/M and SIB Bytes
The ModR/M and SIB bytes follow the opcode byte(s) in many of the processor instructions. They contain the following information:
�The indexing type or register number to be used in the instruction
�The register to be used, or more information to select the instruction
�The base, index, and scale information
The ModR/M byte contains three fields of information:
�The modfield, which occupies the two most significant bits of the byte, combines with the r/m field to form 32 possible values: eight registers and 24 indexing modes.
�The regfield, which occupies the next three bits following the mod field, specifies either a register number or three more bits of opcode information . The meaning of the reg field is determined by the first (opcode) byte of the instruction.
�The r/mfield, which occupies the three least significant bits of the byte , can specify a register as the location of an operand, or can form part of the addressing-mode encoding in combination with the modfield as described above.
The based indexed forms of 32-bit addressing require the SIB byte. The presence of the SIB byte is indicated by certain encodings of the ModR/M byte. The SIB byte then includes the following fields:
�The ssfield, which occupies the two most significant bits of the byte, specifies the scale factor.
�The indexfield, which occupies the next three bits following the ssfield and specifies the register number of the index register.
�The basefield, which occupies the three least significant bits of the byte, specifies the register number of the base register.
ModR/M and SIB Byte Formats /------------------------------------------------\ | MODR/M BYTE | | | | 7 6 5 4 3 2 1 0 | | /------------------------------------------\ | | | MOD | REG/OPCODE | R/M | | | \------------------------------------------/ | | | | SIB (SCALE INDEX BASE) BYTE | | | | 7 6 5 4 3 2 1 0 | | /------------------------------------------\ | | | SS | INDEX | BASE | | | \------------------------------------------/ | | | \------------------------------------------------/
16-Bit Addressing Forms with the ModR/M Byte
/-------------------------------------------------------------------------------\ | r8(/r) | AL | CL | DL | BL | AH | CH | DH | BH | | r16(/r) | AX | CX | DX | BX | SP | BP | SI | DI | | r32(/r) | EAX | ECX | EDX | EBX | ESP | EBP | ESI | EDI | | /digit (Opcode) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | REG = | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 | |-------------------------------+-----------------------------------------------| | Effective | MOD | R/M | MODR/M Values in Hexadecimal | | Address | | | | |-----------------+-----+-------+-----------------------------------------------| | [BX+SI] | 00 | 000 | 00 | 08 | 10 | 18 | 20 | 28 | 30 | 38 | | [BX+DI] | | 001 | 01 | 09 | 11 | 19 | 21 | 29 | 31 | 39 | | [BP+SI] | | 010 | 02 | 0A | 12 | 1A | 22 | 2A | 32 | 3A | | [BP+DI] | | 011 | 03 | 0B | 13 | 1B | 23 | 2B | 33 | 3B | | [SI] | | 100 | 04 | 0C | 14 | 1C | 24 | 2C | 34 | 3C | | [DI] | | 101 | 05 | 0D | 15 | 1D | 25 | 2D | 35 | 3D | | disp16 | | 110 | 06 | 0E | 16 | 1E | 26 | 2E | 36 | 3E | | [BX] | | 111 | 07 | 0F | 17 | 1F | 27 | 2F | 37 | 3F | |-----------------+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----| | [BX+SI]+disp8 | 01 | 000 | 40 | 48 | 50 | 58 | 60 | 68 | 70 | 78 | | [BX+DI]+disp8 | | 001 | 41 | 49 | 51 | 59 | 61 | 69 | 71 | 79 | | [BP+SI]+disp8 | | 010 | 42 | 4A | 52 | 5A | 62 | 6A | 72 | 7A | | [BP+DI]+disp8 | | 011 | 43 | 4B | 53 | 5B | 63 | 6B | 73 | 7B | | [SI]+disp8 | | 100 | 44 | 4C | 54 | 5C | 64 | 6C | 74 | 7C | | [DI]+disp8 | | 101 | 45 | 4D | 55 | 5D | 65 | 6D | 75 | 7D | | [BP]+disp8 | | 110 | 46 | 4E | 56 | 5E | 66 | 6E | 76 | 7E | | [BX]+disp8 | | 111 | 47 | 4F | 57 | 5F | 67 | 6F | 77 | 7F | |-----------------+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----| | [BX+SI]+disp16 | 10 | 000 | 80 | 88 | 90 | 98 | A0 | A8 | B0 | B8 | | [BX+DI]+disp16 | | 001 | 81 | 89 | 91 | 99 | A1 | A9 | B1 | B9 | | [BP+SI]+disp16 | | 010 | 82 | 8A | 92 | 9A | A2 | AA | B2 | BA | | [BP+DI]+disp16 | | 011 | 83 | 8B | 93 | 9B | A3 | AB | B3 | BB | | [SI]+disp16 | | 100 | 84 | 8C | 94 | 9C | A4 | AC | B4 | BC | | [DI]+disp16 | | 101 | 85 | 8D | 95 | 9D | A5 | AD | B5 | BD | | [BP]+disp16 | | 110 | 86 | 8E | 96 | 9E | A6 | AE | B6 | BE | | [BX]+disp16 | | 111 | 87 | 8F | 97 | 9F | A7 | AF | B7 | BF | |-----------------+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----| | EAX/AX/AL | 11 | 000 | C0 | C8 | D0 | D8 | E0 | E8 | F0 | F8 | | ECX/CX/CL | | 001 | C1 | C9 | D1 | D9 | E1 | E9 | F1 | F9 | | EDX/DX/DL | | 010 | C2 | CA | D2 | DA | E2 | EA | F2 | FA | | EBX/BX/BL | | 011 | C3 | CB | D3 | DB | E3 | EB | F3 | FB | | ESP/SP/AH | | 100 | C4 | CC | D4 | DC | E4 | EC | F4 | FC | | EBP/BP/CH | | 101 | C5 | CD | D5 | DD | E5 | ED | F5 | FD | | ESI/SI/DH | | 110 | C6 | CE | D6 | DE | E6 | EE | F6 | FE | | EDI/DI/BH | | 111 | C7 | CF | D7 | DF | E7 | EF | F7 | FF | \-------------------------------------------------------------------------------/ Notes: 1.disp8 denotes an 8-bit displacement following the ModR/M byte, to be sign-extended and added to the index. 2.disp16 denotes a 16-bit displacement following the ModR/M byte, to be added to the index. Default segment register is SS for the effective addresses containing a BP index, DS for other effective addresses. ====32-Bit Addressing Forms with the ModR/M Byte==== /-------------------------------------------------------------------------------\ | r8(/r) | AL | CL | DL | BL | AH | CH | DH | BH | | r16(/r) | AX | CX | DX | BX | SP | BP | SI | DI | | r32(/r) | EAX | ECX | EDX | EBX | ESP | EBP | ESI | EDI | | /digit (Opcode) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | REG = | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 | |-------------------------------+-----------------------------------------------| | Effective | MOD | R/M | MODR/M Values in Hexadecimal | | Address | | | | |-----------------+-----+-------+-----------------------------------------------| | [EAX] | 00 | 000 | 00 | 08 | 10 | 18 | 20 | 28 | 30 | 38 | | [ECX] | | 001 | 01 | 09 | 11 | 19 | 21 | 29 | 31 | 39 | | [EDX] | | 010 | 02 | 0A | 12 | 1A | 22 | 2A | 32 | 3A | | [EBX] | | 011 | 03 | 0B | 13 | 1B | 23 | 2B | 33 | 3B | | [--][--] | | 100 | 04 | 0C | 14 | 1C | 24 | 2C | 34 | 3C | | disp32 | | 101 | 05 | 0D | 15 | 1D | 25 | 2D | 35 | 3D | | [ESI] | | 110 | 06 | 0E | 16 | 1E | 26 | 2E | 36 | 3E | | [EDI] | | 111 | 07 | 0F | 17 | 1F | 27 | 2F | 37 | 3F | |-----------------+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----| | disp8[EAX] | 01 | 000 | 40 | 48 | 50 | 58 | 60 | 68 | 70 | 78 | | disp8[ECX] | | 001 | 41 | 49 | 51 | 59 | 61 | 69 | 71 | 79 | | disp8[EDX] | | 010 | 42 | 4A | 52 | 5A | 62 | 6A | 72 | 7A | | disp8[EBX] | | 011 | 43 | 4B | 53 | 5B | 63 | 6B | 73 | 7B | | disp8[--][--] | | 100 | 44 | 4C | 54 | 5C | 64 | 6C | 74 | 7C | | disp8[EBP] | | 101 | 45 | 4D | 55 | 5D | 65 | 6D | 75 | 7D | | disp8[ESI] | | 110 | 46 | 4E | 56 | 5E | 66 | 6E | 76 | 7E | | disp8[EDI] | | 111 | 47 | 4F | 57 | 5F | 67 | 6F | 77 | 7F | |-----------------+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----| | disp32[EAX] | 10 | 000 | 80 | 88 | 90 | 98 | A0 | A8 | B0 | B8 | | disp32[ECX] | | 001 | 81 | 89 | 91 | 99 | A1 | A9 | B1 | B9 | | disp32[EDX] | | 010 | 82 | 8A | 92 | 9A | A2 | AA | B2 | BA | | disp32[EBX] | | 011 | 83 | 8B | 93 | 9B | A3 | AB | B3 | BB | | disp32[--][--] | | 100 | 84 | 8C | 94 | 9C | A4 | AC | B4 | BC | | disp32[EBP] | | 101 | 85 | 8D | 95 | 9D | A5 | AD | B5 | BD | | disp32[ESI] | | 110 | 86 | 8E | 96 | 9E | A6 | AE | B6 | BE | | disp32[EDI] | | 111 | 87 | 8F | 97 | 9F | A7 | AF | B7 | BF | |-----------------+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----| | EAX/AX/AL | 11 | 000 | C0 | C8 | D0 | D8 | E0 | E8 | F0 | F8 | | ECX/CX/CL | | 001 | C1 | C9 | D1 | D9 | E1 | E9 | F1 | F9 | | EDX/DX/DL | | 010 | C2 | CA | D2 | DA | E2 | EA | F2 | FA | | EBX/BX/BL | | 011 | C3 | CB | D3 | DB | E3 | EB | F3 | FB | | ESP/SP/AH | | 100 | C4 | CC | D4 | DC | E4 | EC | F4 | FC | | EBP/BP/CH | | 101 | C5 | CD | D5 | DD | E5 | ED | F5 | FD | | ESI/SI/DH | | 110 | C6 | CE | D6 | DE | E6 | EE | F6 | FE | | EDI/DI/BH | | 111 | C7 | CF | D7 | DF | E7 | EF | F7 | FF | \-------------------------------------------------------------------------------/ Notes: 1.[--][--] means a SIB follows the ModR/M byte. 2.disp8 denotes an 8-bit displacement following the SIB byte, to be sign- extended and added to the index. disp32 denotes a 32-bit displacement following the SIB byte, to be added to the index. ====32-Bit Addressing Forms with the SIB Byte==== /-------------------------------------------------------------------------------\ | | EAX | ECX | EDX | EBX | ESP | [*] | ESI | EDI | | r32 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | Base = | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 | | Base = | | | | | | | | | |-------------------------------+-----------------------------------------------| | Scaled Index | SS | Index | SIB Values in Hexadecimal | |-----------------+-----+-------+-----------------------------------------------| | [EAX] | 00 | 000 | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | | [ECX] | | 001 | 08 | 09 | 0A | 0B | 0C | 0D | 0E | 0F | | [EDX] | | 010 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | | [EBX] | | 011 | 18 | 19 | 1A | 1B | 1C | 1D | 1E | 1F | | none | | 100 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | | [EBP] | | 101 | 28 | 29 | 2A | 2B | 2C | 2D | 2E | 2F | | [ESI] | | 110 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | | [EDI] | | 111 | 38 | 39 | 3A | 3B | 3C | 3D | 3E | 3F | |-----------------+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----| | [EAX*2] | 01 | 000 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | | [ECX*2] | | 001 | 48 | 49 | 4A | 4B | 4C | 4D | 4E | 4F | | [EDX*2] | | 010 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | | [EBX*2] | | 011 | 58 | 59 | 5A | 5B | 5C | 5D | 5E | 5F | | none | | 100 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | | [EBP*2] | | 101 | 68 | 69 | 6A | 6B | 6C | 6D | 6E | 6F | | [ESI*2] | | 110 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | | [EDI*2] | | 111 | 78 | 79 | 7A | 7B | 7C | 7D | 7E | 7F | |-----------------+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----| | [EAX*4] | 10 | 000 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | | [ECX*4] | | 001 | 88 | 89 | 8A | 8B | 8C | 8D | 8E | 8F | | [EDX*4] | | 010 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | | [EBX*4] | | 011 | 98 | 89 | 9A | 9B | 9C | 9D | 9E | 9F | | none | | 100 | A0 | A1 | A2 | A3 | A4 | A5 | A6 | A7 | | [EBP*4] | | 101 | A8 | A9 | AA | AB | AC | AD | AE | AF | | [ESI*4] | | 110 | B0 | B1 | B2 | B3 | B4 | B5 | B6 | B7 | | [EDI*4] | | 111 | B8 | B9 | BA | BB | BC | BD | BE | BF | |-----------------+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----| | [EAX*8] | 11 | 000 | C0 | C1 | C2 | C3 | C4 | C5 | C6 | C7 | | [ECX*8] | | 001 | C8 | C9 | CA | CB | CC | CD | CE | CF | | [EDX*8] | | 010 | D0 | D1 | D2 | D3 | D4 | D5 | D6 | D7 | | [EBX*8] | | 011 | D8 | D9 | DA | DB | DC | DD | DE | DF | | none | | 100 | E0 | E1 | E2 | E3 | E4 | E5 | E6 | E7 | | [EBP*8] | | 101 | E8 | E9 | EA | EB | EC | ED | EE | EF | | [ESI*8] | | 110 | F0 | F1 | F2 | F3 | F4 | F5 | F6 | F7 | | [EDI*8] | | 111 | F8 | F9 | FA | FB | FC | FD | FE | FF | \-------------------------------------------------------------------------------/ Notes: [*] means a disp32 with no base if MOD is 00, [EBP] otherwise. This provides the following addressing modes: disp32[index] (MOD=00) disp8[EBP][index] (MOD=01) disp32[EBP][index] (MOD=10) ===How to Read the Instruction Set Pages=== The following sections describe how to interpret the description pages for each instruction listed in the Intel Instruction Set section. Each instruction family is introduced by a descriptive heading such as the following: CMC-Complement Carry Flag Each instruction family may be accompanied by descriptive sections labeled as follows: Details Table, Operation, Flags Affected, Protected Mode Exceptions, Real Address Mode Exceptions, Virtual-8086 Mode Exceptions, and optionally, a Notes section. The following sections explain the notational conventions and abbreviations used in these paragraphs of the instruction descriptions. ====Details Table==== For each instruction family, a table is given to list the details of each individual instruction. The following is an example of this table: /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F5 |CMC |2|2|2|2|2|2|Complement carry flag | \------------------------------------------------------------------------------/ The Encoding, Instruction, and Description columns are described in the following sections. The columns labeled 0, 1, 2, 3, 4, and 5 are collectively described in the Clocks section. A timing entry appearing in one of these columns is an indication that the associated processor implements that particular instruction variation. The column names are abbreviated, and are described as follows: 0The 8088/8086/8087 Processor Family 1The 80186/8087 Processor Family 2The 80286/80287 Processor Family 3The 80386/80387 Processor Family 4The 80486 Processor Family 5The Pentium Processor Family =====Encoding Column===== The "Encoding" column gives the complete object code produced for each form of the instruction. When possible, the codes are given as hexadecimal bytes , in the same order in which they appear in memory. Definitions of entries other than hexadecimal bytes are as follows: �/digit: (digit is between 0 and 7) indicates that the ModR/M byte of the instruction uses only the r/m (register or memory) operand. The reg field contains the digit that provides an extension to the instruction's opcode. �/r: indicates that the ModR/M byte of the instruction contains both a register operand and an r/m operand. �cb, cw, cd, cp: a 1-byte (cb), 2-byte (cw), 4-byte (cd) or 6-byte (cp) value following the opcode that is used to specify a code offset and possibly a new value for the code segment register. �ib, iw, id: a 1-byte (ib), 2-byte (iw), or 4-byte (id) immediate operand to the instruction that follows the opcode, ModR/M bytes or scale-indexing bytes. The opcode determines if the operand is a signed value. All words and doublewords are given with the low-order byte first. �+rb, +rw, +rd: a register code, from 0 through 7, added to the hexadecimal byte given at the left of the plus sign to form a single opcode byte. The codes are- <PRE> /--------------------------------------------------------------\ | rb | rw | rd | |--------------------+--------------------+--------------------| |AL = 0 |AX = 0 |EAX = 0 | |--------------------+--------------------+--------------------| |CL = 1 |CX = 1 |ECX = 1 | |--------------------+--------------------+--------------------| |DL = 2 |DX = 2 |EDX = 2 | |--------------------+--------------------+--------------------| |BL = 3 |BX = 3 |EBX = 3 | |--------------------+--------------------+--------------------| |AH = 4 |SP = 4 |ESP = 4 | |--------------------+--------------------+--------------------| |CH = 5 |BP = 5 |EBP = 5 | |--------------------+--------------------+--------------------| |DH = 6 |SI = 6 |ESI = 6 | |--------------------+--------------------+--------------------| |BH = 7 |DI = 7 |EDI = 7 | \--------------------------------------------------------------/
- +i: used in floating-point instructions when one of the operands is ST(i) from the FPU register stack. The number i (which can range from 0 to 7) is added to the hexadecimal byte given at the left of the plus sign to form a single opcode byte.
Instruction Column
The "Instruction" column gives the syntax of the instruction statement as it would appear in an assembler program. The following is a list of the symbols used to represent operands in the instruction statements:
rel8 A relative address in the range from 128 bytes before the end of the instruction to 127 bytes after the end of the instruction. rel16 A relative address in the range from 32768 bytes before the end of the instruction to 32767 bytes after the end of the instruction. Applies to instructions with an operand-size attribute of 16 bits, and must be within the same code segment as the instruction assembled. rel32 A relative address in the range from 2147483648 bytes before the end of the instruction to 2147483647 bytes after the end of the instruction. Applies to instructions with an operand-size attribute of 32 bits, and must be within the same code segment as the instruction assembled. ptr16:16 A far pointer, typically in a code segment different from that of the instruction. The notation 16:16 indicates that the value of the pointer has two parts. The value to the left of the colon is a 16-bit selector or value destined for the code segment register. The value to the right reflects the operand-size attribute of the instruction (16 bits) and corresponds to the offset within the destination segment. ptr16:32 A far pointer, typically in a code segment different from that of the instruction. The notation 16:32 indicates that the value of the pointer has two parts. The value to the left of the colon is a 16-bit selector or value destined for the code segment register. The value to the right reflects the operand-size attribute of the instruction (32 bits) and corresponds to the offset within the destination segment. r8 One of the byte registers AL, CL, DL, BL, AH, CH, DH, or BH. r16 One of the word registers AX, CX, DX, BX, SP, BP, SI, or DI. r32 One of the doubleword registers EAX, ECX, EDX, EBX, ESP, EBP, ESI, or EDI. imm8 An immediate byte value. imm8 is a signed number between -128 and +127 inclusive. For instructions in which imm8 is combined with a word or doubleword operand, the immediate value is sign-extended to form a word or doubleword. The upper byte of the word is filled with the topmost bit of the immediate value. imm16 An immediate word value used for instructions whose operand-size attribute is 16 bits. This is a number between -32768 and +32767 inclusive. imm32 An immediate doubleword value used for instructions whose operand-size attribute is 32-bits. It allows the use of a number between +2147483647 and -2147483648 inclusive. r/m8 A one-byte operand that is either the contents of a byte register (AL, BL, CL, DL, AH, BH, CH, DH), or a byte from memory. r/m16 A word register or memory operand used for instructions whose operand-size attribute is 16 bits. The word registers are: AX, BX, CX, DX, SP, BP, SI, DI. The contents of memory are found at the address provided by the effective address computation. r/m32 A doubleword register or memory operand used for instructions whose operand-size attribute is 32-bits. The doubleword registers are: EAX, EBX, ECX, EDX, ESP, EBP, ESI, EDI. The contents of memory are found at the address provided by the effective address computation. r/m64 A quadword register or memory operand used for instructions whose operand- size attribute is 64-bits. The reg/opcode field represents the opcode. The contents of memory are found at the address provided by the effective address computation. m A 16 or 32-bit memory operand. m8 A memory byte addressed by DS:[E]SI or ES:[E]DI (used only by string instructions). m16 A memory word addressed by DS:[E]SI or ES:[E]DI (used only by string instructions). m32 A memory doubleword addressed by DS:[E]SI or ES:[E]DI (used only by string instructions). m16:16 A memory operand containing a far pointer composed of two numbers. The number to the left of the colon corresponds to the pointer's segment selector. The number to the right corresponds to its offset. m16:32 A memory operand containing a far pointer composed of two numbers. The number to the left of the colon corresponds to the pointer's segment selector. The number to the right corresponds to its offset. m16&16 A memory operand consisting of data item pairs whose sizes are indicated on the left and the right side of the ampersand. All memory addressing modes are allowed. Used by the BOUND instruction to provide an operand containing an upper and lower bounds for array indices. m16&32 A memory operand consisting of data item pairs whose sizes are indicated on the left and the right side of the ampersand. All memory addressing modes are allowed. Used by the by LIDT and LGDT to provide a word with which to load the limit field, and a doubleword with which to load the base field of the corresponding Global and Interrupt Descriptor Table Registers. m32&32 A memory operand consisting of data item pairs whose sizes are indicated on the left and the right side of the ampersand. All memory addressing modes are allowed. Used by the BOUND instruction to provide an operand containing an upper and lower bounds for array indices. moffs8 The memory offset of a BYTE variable used in some variants of the MOV instruction. The actual address is given by a simple offset relative to the segment base. No ModR/M byte is used in the instruction. The address- size attribute of the instruction determines the size of the offset data. moffs16 The memory offset of a WORD variable used in some variants of the MOV instruction. The actual address is given by a simple offset relative to the segment base. No ModR/M byte is used in the instruction. The address- size attribute of the instruction determines the size of the offset data. moffs32 The memory offset of a DWORD variable used in some variants of the MOV instruction. The actual address is given by a simple offset relative to the segment base. No ModR/M byte is used in the instruction. The address- size attribute of the instruction determines the size of the offset data. Sreg A segment register. The segment register bit assignments are ES=0, CS=1, SS=2, DS=3, FS=4, and GS=5. m32real A single-precision floating-point operand in memory. m64real A double-precision floating-point operand in memory. m80real An extended-precision floating-point operand in memory. m80bcd A 80 byte binary-coded decimal operand in memory. m16int A word integer operand in memory. Used in some floating-point instructions. m32int A short integer operand in memory. Used in some floating-point instructions. m64int A long integer operand in memory. Used in some floating-point instructions. m14byte A 14-byte floating-point operand in memory. m28byte A 28-byte floating-point operand in memory. m94byte A 94-byte floating-point operand in memory. m108byte A 108-byte floating-point operand in memory. ST or ST(0) Top element of the FPU register stack. ST(i) ith element from the top of the FPU register stack. (i=0..7)
Clocks Columns
Each "Clocks" column gives the approximate number of clock cycles the instruction takes to execute on that particular processor. The clock count calculations makes the following assumptions: �Data and instruction accesses hit in the cache. �The target of a jump instruction is in the cache. �No invalidate cycles contend with the instruction for use of the cache. �Page translation hits in the TLB. �Memory operands are aligned. �Effective address calculations use a base register which is not the destination register of the preceding instruction. �No exceptions are detected during execution. �There are no write-buffer delays. The following symbols are used in the clock count specifications: �n, which represents a number of repetitions. �m, which represents the number of components in the next instruction executed, where the entire displacement (if any) counts as one component, the entire immediate data (if any) counts as one component, and every other byte of the instruction and prefix(es) each counts as one component. �pm:, a clock count that applies when the instruction executes in Protected Mode. pm: is not given when the clock counts are the same for Protected and Real Address Modes. When an exception occurs during the execution of an instruction and the exception handler is in another task, the instruction execution time is increased by the number of clocks to effect a task switch. This parameter depends on several factors: �The type of TSS used to represent the new task (32 bit TSS or 16 bit TSS). �Whether the current task is in V86 mode. �Whether the new task is in V86 mode. �Whether accesses hit in the cache. �Whether a task gate on an interrupt/trap gate is used. The following table summarizes the task switch times for exceptions, assuming cache hits and the use of task gates. Task Switch Times for Exceptions /------------------------------------------------------------------------------\ | OLD TASK | NEW TASK | | |----------------------------------------------| | | TO 32 BIT TSS | TO 16 BIT TSS | TO VM TSS | |-------------------------------+---------------+---------------+--------------| | VM/32 bit/16 bit TSS | 85 | 87 | 71 | \------------------------------------------------------------------------------/
Description Column
The "Description" column following the "Clocks" columns briefly explains the various forms of the instruction. The "Operation" and "Description" sections contain more details of the instruction's operation.
Description
The "Description" section contains further explanation of the instruction's operation.
Operation
The "Operation" section contains an algorithmic description of the instruction which uses a notation similar to the Algol or Pascal language. The algorithms are composed of the following elements: �Comments are enclosed within the symbol pairs "(*" and "*)". �Compound statements are enclosed between the keywords of the "if" statement (IF, THEN, ELSE, FI) or of the "do" statement (DO, OD), or of the "case" statement (CASE ... OF, ESAC). �Execution continues until the END statement is encountered. �A register name implies the contents of the register. A register name enclosed in brackets implies the contents of the location whose address is contained in that register. For example, ES:[DI] indicates the contents of the location whose ES segment relative address is in register DI. [SI] indicates the contents of the address contained in register SI relative to SI's default segment (DS) or overridden segment. �Brackets are also used for memory operands, where they mean that the contents of the memory location is a segment-relative offset. For example, [SRC] indicates that the contents of the source operand is a segment- relative offset. �A � B; indicates that the value of B is assigned to A. �The symbols =, <>, ò, and ó are relational operators used to compare two values, meaning equal, not equal, greater or equal, less or equal, respectively. A relational expression such as A = B is TRUE if the value of A is equal to B; otherwise it is FALSE. �A * B indicates that the value of A is multiplied by the value of B. The following identifiers are used in the algorithmic descriptions: �OperandSize represents the operand-size attribute of the instruction, which is either 16 or 32 bits. AddressSize represents the address-size attribute, which is either 16 or 32 bits. For example,
IF instruction = CMPSW THEN OperandSize � 16; ELSE
IF instruction = CMPSD THEN OperandSize � 32; FI;
FI; indicates that the operand-size attribute depends on the form of the CMPS instruction used. Refer to the explanation of address-size and operand-size attributes at the beginning of this chapter for general guidelines on how these attributes are determined. �StackAddrSize represents the stack address-size attribute associated with the instruction, which has a value of 16 or 32 bits, as explained earlier in the chapter. �SRC represents the source operand. When there are two operands, SRC is the one on the right. �DEST represents the destination operand. When there are two operands, DEST is the one on the left. �LeftSRC, RightSRC distinguishes between two operands when both are source operands. �eSP represents either the SP register or the ESP register depending on the setting of the B-bit for the current stack segment. The following functions are used in the algorithmic descriptions: �Truncate to 16 bits(value) reduces the size of the value to fit in 16 bits by discarding the uppermost bits as needed. �Addr(operand) returns the effective address of the operand (the result of the effective address calculation prior to adding the segment base). �ZeroExtend(value) returns a value zero-extended to the operand-size attribute of the instruction. For example, if OperandSize = 32, ZeroExtend of a byte value of -10 converts the byte from F6H to doubleword with hexadecimal value 000000F6H. If the value passed to ZeroExtend and the operand-size attribute are the same size, ZeroExtend returns the value unaltered. �SignExtend(value) returns a value sign-extended to the operand-size attribute of the instruction. For example, if OperandSize = 32, SignExtend of a byte containing the value -10 converts the byte from F6H to a doubleword with hexadecimal value FFFFFFF6H. If the value passed to SignExtend and the operand-size attribute are the same size, SignExtend returns the value unaltered. �Push(value) pushes a value onto the stack. The number of bytes pushed is determined by the operand-size attribute of the instruction. The action of Push is as follows: IF StackAddrSize = 16 THEN
IF OperandSize = 16 THEN SP � SP -2; SS:[SP] � value; (* 2 bytes assigned starting at byte address in SP *) ELSE (* OperandSize = 32 *) SP � SP -4; SS:[SP] � value; (* 4 bytes assigned starting at byte address in SP *) FI;
ELSE (* StackAddrSize = 32 *)
IF OperandSize = 16 THEN ESP � ESP -2; SS:[ESP] � value; (* 2 bytes assigned starting at byte address in ESP*) ELSE (* OperandSize = 32 *) ESP � ESP -4; SS:[ESP] � value; (* 4 bytes assigned starting at byte address in ESP*) FI;
FI; �Pop(value) removes the value from the top of the stack and returns it. The statement EAX � Pop( ); assigns to EAX the 32-bit value that Pop took from the top of the stack. Pop will return either a word or a doubleword depending on the operand-size attribute. The action of Pop is as follows: IF StackAddrSize = 16 THEN
IF OperandSize = 16 THEN ret val � SS:[SP]; (* 2-byte value *) SP � SP + 2; ELSE (* OperandSize = 32 *) ret val � SS:[SP]; (* 4-byte value *) SP � SP + 4; FI;
ELSE (* StackAddrSize = 32 *)
IF OperandSize = 16 THEN ret val � SS:[ESP]; (* 2 byte value *) ESP � ESP + 2; ELSE (* OperandSize = 32 *) ret val � SS:[ESP]; (* 4 byte value *) ESP � ESP + 4; FI;
FI; RETURN(ret val); (*returns a word or doubleword*) Pop ST is used on floating-point instruction pages to mean pop the FPU register stack. �Bit[BitBase, BitOffset] returns the value of a bit within a bit string, which is a sequence of bits in memory or a register. Bits are numbered from low-order to high-order within registers and within memory bytes. In memory , the two bytes of a word are stored with the low-order byte at the lower address. If the base operand is a register, the offset can be in the range 0..31. This offset addresses a bit within the indicated register. An example, 'BIT [EAX, 21]' is illustrated in the following figure. Bit Offset for BIT[EAX,21]
/------------------------------------------------------\ | 31 21 0 | | /----------------------------------------------\ | | \----------------------------------------------/ | | � � | | | | | | \--------BITOFFSET=21---------/ | | | \------------------------------------------------------/ If BitBase is a memory address, BitOffset can range from -2 gigabits to 2 gigabits. The addressed bit is numbered (Offset MOD 8) within the byte at address (BitBase + (BitOffset DIV 8)), where DIV is signed division with rounding towards negative infinity, and MOD returns a positive number. This is illustrated in the following figure. Memory Bit Indexing
/------------------------------------------------------\ | 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 | | /----------------------------------------------\ | | \----------------------------------------------/ | | | BITBASE+1 | BITBASE | BITBASE-1 | | | � | | | \------OFFSET=+13-----------/ | | | | | | 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 | | /----------------------------------------------\ | | \----------------------------------------------/ | | | BITBASE | BITBASE-1 | BITBASE-2 | | | | � | | \-----OFFSET=-11-------/ | | | \------------------------------------------------------/ �I-O-Permission(I-O-Address, width) returns TRUE or FALSE depending on the I/O permission bitmap and other factors. This function is defined as follows: IF TSS type is 16-bit THEN RETURN FALSE; FI; Ptr� [TSS+66]; (* fetch bitmap pointer *) BitStringAddr � SHR (I-O-Address, 3) + Ptr; MaskShift � I-O-Address AND 7; CASE width OF:
BYTE: nBitMask � 1; WORD: nBitMask � 3; DWORD: nBitMask � 15;
ESAC; mask � SHL (nBitMask, MaskShift); CheckString � [BitStringAddr] AND mask; IF CheckString = 0 THEN RETURN (TRUE); ELSE RETURN (FALSE); FI; �Switch-Tasks is described in detail in the Intel documentation.
Flags Affected
Pages describing basic instructions have a "Flags Affected" section the contains a flags information table similar to the following: /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| |0 | | |* |* |? |* |0 | \-----------------------/
The first row of the table lists the mnemonic identifiers for the various flags. The entries in the second row are filled in according to how the flag is affected by the instruction:
/-----------------------------------------\ |VALUE |MEANING | |--------+--------------------------------| |<blank> |Instruction does not affect flag| |--------+--------------------------------| |0 |Instruction clears the flag | |--------+--------------------------------| |1 |Instruction sets the flag | |--------+--------------------------------| |? |Instruction's effect on the flag| | |is undefined | |--------+--------------------------------| |* |Instruction modifies the flag | | |(either sets or clears depending| | |on operands) | \-----------------------------------------/
The following table lists the mnemonic identifier, full name, and purpose of the flags that are applicable to all processor families and that are are most commonly used from within application-level programs. Not all flags are included in this table; see the Intel documentation for a more complete description of flag usage from within systems-level programs.
/--------------------------------------------------------------------------------\ |MNEMONIC|FLAG NAME |PURPOSE | |--------+----------------+------------------------------------------------------| |OF |Overflow |Result exceeds positive or negative limit of number | | | |range | |--------+----------------+------------------------------------------------------| |DF |Direction |Setting the DF flag causes string instructions to | | | |auto-decrement, that is, to process strings from high | | | |addresses. Clearing the DF flag causes string | | | |instructions to auto-increment, or to process strings | | | |from low addresses to high addresses. | |--------+----------------+------------------------------------------------------| |IF |Interrupt Enable|Controls the acceptance of external interrupts | | | |signalled via the INTR pin. | |--------+----------------+------------------------------------------------------| |SF |Sign |Result is negative (less than zero) | |--------+----------------+------------------------------------------------------| |ZF |Zero |Result is zero | |--------+----------------+------------------------------------------------------| |AF |Auxiliary carry |Carry out of bit position 3 (used for BCD) | |--------+----------------+------------------------------------------------------| |PF |Parity |Low byte of result has even parity (even number of set| | | |bits) | |--------+----------------+------------------------------------------------------| |CF |Carry |Carry out of most significant bit of result | \--------------------------------------------------------------------------------/
The flags information table is usually followed by a paragraph description of how the flags are affected:
- If a flag is always cleared or always set by the instruction, the value is given (0 or 1) after the flag name. Arithmetic and logical instructions usually assign values to the status flags in a uniform manner. Nonconventional assignments are described in the Operation section.
- The values of flags listed as "undefined" may be changed by the instruction in an indeterminate manner.
All flags not listed are unchanged by the instruction.
FPU Flags Affected
The floating-point instruction pages have a section called "FPU Flags Affected," which tells how each instruction can affect the four condition code bits of the FPU status word. These pages contain a condition code information table similar to the following: /-----------\ |C0|C1|C2|C3| |--+--+--+--| |? |* |? |? | \-----------/ The first row of the table lists the names of the floating-point condition code flags. The entries in the second row are filled in according to how the flag is affected by the instruction: /-----------------------------------------\ |VALUE |MEANING | |--------+--------------------------------| |<blank> |Instruction does not affect flag| |--------+--------------------------------| |0 |Instruction clears the flag | |--------+--------------------------------| |1 |Instruction sets the flag | |--------+--------------------------------| |? |Instruction's effect on the flag| | |is undefined | |--------+--------------------------------| |* |Instruction modifies the flag | | |(either sets or clears depending| | |on operands) | \-----------------------------------------/ The four FPU condition code bits (C0, C1, C2, and C3) are similar to the flags in a CPU; the processor updates these bits to reflect the outcome of arithmetic operations. The effect of these instructions on the condition code bits is summarized in the following table: Condition Code Interpretation /------------------------------------------------------------------------------\ | INSTRUCTION | C0 | C3 | C2 | C1 | |-------------------------+--------------------------+------------+------------| | FCOM, FCOMP, FCOMPP, | Result of Comparison | Operands | Zero or | | FTST, FUCOMPP, FICOM, | | is not | O/U# | | FICOMP | | Comparable | | |-------------------------+---------------------------------------+------------| | FXAM | Operand class | Sign or | | | | O/U# | |-------------------------+---------------------------------------+------------| | FPREM, FPREM1 | Q2 | Q1 | 0=reduction| Q0 or O/U# | | | | | complete | | | | | | | | | | | | 1=reduction| | | | | | incomplete | | |-------------------------+---------------------------------------+------------| | FIST, FBSTP, FRINDINT, | UNDEFINED | Roundup or | | FST, FSTP, FADD, FMUL, | | O/U# | | FDIV, FDIVR, FSUB, | | | | FSUBR, FSCALE, FSQRT, | | | | FPATAN, F2XM1, FYL2X, | | | | FYL2XP1 | | | |-------------------------+---------------------------------------+------------| | FPTAN, FSIN, FCOS, | UNDEFINED | 0=reduction| Roundup or | | FSINCOS | | complete | O/U# | | | | | (UNDEFINED | | | | 1=reduction| if C2=1) | | | | incomplete | | |-------------------------+---------------------------------------+------------| | FCHS, FABS, FXCH, | UNDEFINED | Zero or | | FINCSTP, FDECSTP, Con- | | O/U# | | stant Loads, FXTRACT, | | | | FLD, FILD, FBLD, FSTP | | | | (ext. real) | | | |-------------------------+----------------------------------------------------| | FLDENV, FRSTOR | Each bit loaded from memory | |-------------------------+----------------------------------------------------| | FLDCW, FSTENV, FSTCW, | UNDEFINED | | FSTSW, FCLEX | | |-------------------------+----------------------------------------------------| | FINIT, FSAVE | Zero | Zero | Zero | Zero | \------------------------------------------------------------------------------/ NOTES: O/U# When both IE and SF bits of status word are set, this bit distinguishes between stack overflow (C1=1) and underflow (C1=0). Reduction If FPREM and FPREM1 produces a remainder that is less than the modulus, reduction is complete. When reduction is incomplete the value at the top of the stack is a parial remainder, which can be used as input to further reduction. For FPTAN, FSIN, FCOS and FSINCOS, the reduction bit is set if the operand at the top of the stack is too large. In this case, the original operand remains at the top of the stack. Roundup When the PE bit of the status word is set, this bit indicates whether the last rounding in the instruction was upward. UNDEFINED Do not rely on any specific value in these bits. The condition code bits are used primarily for conditional branching. The FSTSW AX instruction stores the FPU status word directly into the AX register, allowing these condition codes to be inspected efficiently. The SAHF instruction can copy C3 - C0 directly to the CPU's flag bits to simplify conditional branching. The following table shows the mapping of these bits to the CPU flag bits. /-------------------------\ |FPU FLAG |IU FLAG | |------------+------------| |C0 |CF | |------------+------------| |C1 |(None) | |------------+------------| |C2 |PF | |------------+------------| |C3 |ZF | \-------------------------/
Numeric Exceptions
For floating-point instruction pages, this section lists the exception flags of the FPU status word that each instruction can set. Exceptions are listed in abbreviated form, and are defined as follows: ISInvalid operand due to stack overflow/underflow IInvalid operand due to other cause DDenormalized operand ZDivide by zero ONumeric overflow UNumeric underflow PInexact result (precision)
Protected Mode Exceptions
This section lists the exceptions that can occur when the instruction is executed in protected mode. The exception names are a pound sign (#) followed by two letters and an optional error code in parentheses. For example, #GP(0) denotes a general protection exception with an error code of 0. The following table associates each two-letter name with the corresponding interrupt number. Exceptions /------------------------------------------------------------------------------\ | MNEMONIC | INTERRUPT | DESCRIPTION | |-------------------+-------------------+--------------------------------------| | #UD | 6 | Invalid opcode | | #NM | 7 | Device not available | | #DF | 8 | Double fault | | #TS | 10 | Invalid TSS | | #NP | 11 | Segment or gate not present | | #SS | 12 | Stack fault | | #GP | 13 | General protection fault | | #PF | 14 | Page fault | | #MF | 16 | Floating-point error | | #AC | 17 | Alignment check | \------------------------------------------------------------------------------/ Refer to the Intel documentation for a description of the exceptions and the processor state upon entry to the exception. Application programmers should consult the documentation provided with their operating systems to determine the actions taken when exceptions occur.
Real Address Mode Exceptions
Because less error checking is performed by the processor in Real Address Mode, this mode has fewer exception conditions. Refer to the Intel documentation for further information on these exceptions.
Virtual-8086 Mode Exceptions
Virtual 8086 tasks provide the ability to simulate Virtual 8086 machines. Virtual 8086 Mode exceptions are similar to those for the 8086 processor, but there are some differences. Refer to the Intel documentation for complete information on Virtual Mode exceptions. Instruction Timing ì Instruction Timing (102-137)+EA Instruction Timing (103-139)+EA Instruction Timing (108-143)+EA Instruction Timing (109-144)+EA Instruction Timing (110-125)+EA Instruction Timing (12-18)+fw Instruction Timing (124-138)+EA Instruction Timing (130-144)+EA Instruction Timing (154-168)+EA Instruction Timing (197-207)+EA Instruction Timing (2-8)+fw Instruction Timing (215-225)+EA Instruction Timing (216-226)+EA Instruction Timing (220-230)+EA Instruction Timing (221-231)+EA Instruction Timing (224-238)+EA Instruction Timing (225-239)+EA Instruction Timing (230-243)+EA Instruction Timing (231-245)+EA Instruction Timing (290-310)+EA Instruction Timing (35-45)+EA Instruction Timing (38-56)+EA Instruction Timing (40-60)+EA Instruction Timing (46-54)+EA Instruction Timing (52-58)+EA Instruction Timing (52-60)+EA Instruction Timing (520-540)+EA Instruction Timing (53-65)+EA Instruction Timing (60-68)+EA Instruction Timing (60-70)+EA Instruction Timing (63-73)+EA Instruction Timing (65-75)+EA Instruction Timing (67-77)+EA Instruction Timing (7-14)+EA Instruction Timing (72-86)+EA Instruction Timing (74-88)+EA Instruction Timing (78-91)+EA Instruction Timing (80-90)+EA Instruction Timing (80-93)+EA Instruction Timing (82-92)+EA Instruction Timing (84-90)+EA Instruction Timing (84-94)+EA Instruction Timing (86-92)+EA Instruction Timing (90-120)+EA Instruction Timing (94-105)+EA Instruction Timing (95-125)+EA Instruction Timing (96-104)+EA Instruction Timing (98-106)+EA Instruction Timing 0 Instruction Timing 1 Instruction Timing 1-3 Instruction Timing 1/2 Instruction Timing 1/3 Instruction Timing 10 Instruction Timing 10+3n Instruction Timing 10+m Instruction Timing 10, pm:4*/24** Instruction Timing 10-15 Instruction Timing 10-16 Instruction Timing 10-17 Instruction Timing 10-18 Instruction Timing 10/13 Instruction Timing 101-112/ (107-118)+EA Instruction Timing 102-137 Instruction Timing 103-139 Instruction Timing 108-143 Instruction Timing 109-144 Instruction Timing 11 Instruction Timing 11+fw Instruction Timing 11+m Instruction Timing 11, pm:5*/25** Instruction Timing 11,pm:23 Instruction Timing 11-17 Instruction Timing 11/18+EA Instruction Timing 110-125 Instruction Timing 118-133/ (124-139)+EA Instruction Timing 12 Instruction Timing 12+4(n-1) Instruction Timing 12+m, pm:27+m Instruction Timing 12, pm:6*/26** Instruction Timing 12, pm:9*/26**, vm:24 Instruction Timing 12-18 Instruction Timing 12-23 Instruction Timing 12-42/13-42 Instruction Timing 120-127 Instruction Timing 120-538 Instruction Timing 121-128 Instruction Timing 122-129 Instruction Timing 122-771 Instruction Timing 123-772 Instruction Timing 124-138 Instruction Timing 128-154/ (134-160)+EA Instruction Timing 13 Instruction Timing 13, pm:10*/27**, vm:25 Instruction Timing 13, pm:7*/27** Instruction Timing 13,pm:18 Instruction Timing 13,pm:26 Instruction Timing 13,pm:33 Instruction Timing 13-16 Instruction Timing 13-18 Instruction Timing 13-26 Instruction Timing 13-42 Instruction Timing 13-57 Instruction Timing 13/16 Instruction Timing 13/18 Instruction Timing 13/26 Instruction Timing 13/42 Instruction Timing 130-144 Instruction Timing 130-145 Instruction Timing 131,pm:120 Instruction Timing
Instruction Timing 134-148 Instruction Timing 135-141 Instruction Timing 136-140 Instruction Timing 14 Instruction Timing 14, pm:8*/28** Instruction Timing 14, pm:8*/28**, vm:27 Instruction Timing 14,pm:17 Instruction Timing 14,pm:25 Instruction Timing 14,pm:33 Instruction Timing 14/16 Instruction Timing 14/17 Instruction Timing 140-279 Instruction Timing 144-162/ (150-168)+EA Instruction Timing 148-154 Instruction Timing 15 Instruction Timing 15+2n Instruction Timing 15+4(n-1) Instruction Timing 15+fw Instruction Timing 15+m, pm:26+m Instruction Timing 15, pm:9*/29** Instruction Timing 15,pm:25 Instruction Timing 15-17 Instruction Timing 15-190 Instruction Timing 15-21 Instruction Timing 15-22 Instruction Timing 15/16 Instruction Timing 154-168 Instruction Timing 16 Instruction Timing 16+EA Instruction Timing 16+fw Instruction Timing 16, pm:11*/31**, vm:29 Instruction Timing 16-126 Instruction Timing 16-20 Instruction Timing 16-22 Instruction Timing 16-50 Instruction Timing 16-64 Instruction Timing 16/16 Instruction Timing 16/21+EA Instruction Timing 16/29 Instruction Timing 16/4 Instruction Timing 165-184/ (171-190)+EA Instruction Timing 169 Instruction Timing 17 Instruction Timing 17+3n Instruction Timing 17+EA Instruction Timing 17+fw Instruction Timing 17+m; pm:34+m Instruction Timing 17, pm:10*/32**, vm:30 Instruction Timing 17, pm:10*32**, vm:30 Instruction Timing 17,pm:19 Instruction Timing 17,pm:31 Instruction Timing 17-137 Instruction Timing 17-173 Instruction Timing 17-22 Instruction Timing 17-23 Instruction Timing 17-24 Instruction Timing 17/19 Instruction Timing 17/20 Instruction Timing 17/5 Instruction Timing 171-326 Instruction Timing 172-176 Instruction Timing 175 Instruction Timing 177/182 Instruction Timing 178 Instruction Timing 17;pm:20 Instruction Timing 18 Instruction Timing 18+m, pm:32+m Instruction Timing 18-124 Instruction Timing 18-24 Instruction Timing 18/6 Instruction Timing 180 Instruction Timing 180-186 Instruction Timing 180/185 Instruction Timing 183 Instruction Timing 18;pm:20 Instruction Timing 19 Instruction Timing 19+TS Instruction Timing 19-32 Instruction Timing 19/20 Instruction Timing 19/5 Instruction Timing 191-497 Instruction Timing 193-203 Instruction Timing 194-204 Instruction Timing 194-809 Instruction Timing 196-329 Instruction Timing 197-207 Instruction Timing 198-208 Instruction Timing 2 Instruction Timing 2+EA Instruction Timing 2+fw Instruction Timing 2-8 Instruction Timing 2/15+EA Instruction Timing 2/2 Instruction Timing 2/3 Instruction Timing 2/3,pm:2 Instruction Timing 2/4 Instruction Timing 2/5 Instruction Timing 2/5,pm:17/19 Instruction Timing 2/5,pm:18/19 Instruction Timing 2/6 Instruction Timing 2/7 Instruction Timing 2/8+EA Instruction Timing 2/9+EA Instruction Timing 20 Instruction Timing 20+TS Instruction Timing 20-24 Instruction Timing 20-31 Instruction Timing 20-35 Instruction Timing 20-55 Instruction Timing 20-70 Instruction Timing 20/21 Instruction Timing 200-273 Instruction Timing 2000+ Instruction Timing 205-215 Instruction Timing 21 Instruction Timing 21-30 Instruction Timing 21-303 Instruction Timing 21/24 Instruction Timing 21/46 Instruction Timing 211-476 Instruction Timing 215-225 Instruction Timing 216-226 Instruction Timing 22 Instruction Timing 22+m; pm:38+m Instruction Timing 22,pm:38 Instruction Timing 22-103 Instruction Timing 22-111 Instruction Timing 22-24 Instruction Timing 22/25 Instruction Timing 220-230 Instruction Timing 221-231 Instruction Timing 224-238 Instruction Timing 225-239 Instruction Timing 23 Instruction Timing 23-27 Instruction Timing 23-31 Instruction Timing 23/27 Instruction Timing 230-243 Instruction Timing 231-245 Instruction Timing 24 Instruction Timing 24+EA Instruction Timing 24-25 Instruction Timing 24-32 Instruction Timing 24/24 Instruction Timing 25 Instruction Timing 25-33 Instruction Timing 25/26 Instruction Timing 25/28 Instruction Timing 250-800 Instruction Timing 257-354 Instruction Timing 257-547 Instruction Timing 26 Instruction Timing 26-34 Instruction Timing 266-275 Instruction Timing 27 Instruction Timing 27-35 Instruction Timing 27-55 Instruction Timing 27/28 Instruction Timing 28 Instruction Timing 28-34 Instruction Timing 29-34 Instruction Timing 29-37 Instruction Timing 29-57 Instruction Timing 290-310 Instruction Timing 292-365 Instruction Timing 3 Instruction Timing 3+fw Instruction Timing 3/1 Instruction Timing 3/12 Instruction Timing 3/15+EA Instruction Timing 3/16+EA Instruction Timing 3/3 Instruction Timing 3/4 Instruction Timing 3/5 Instruction Timing 3/6 Instruction Timing 3/7 Instruction Timing 3/8 Instruction Timing 3/9 Instruction Timing 3/9+EA Instruction Timing 30 Instruction Timing 30-32 Instruction Timing 30-38 Instruction Timing 30-45 Instruction Timing 30-540 Instruction Timing 308 Instruction Timing 31 Instruction Timing 310-630 Instruction Timing 314-487 Instruction Timing 32 Instruction Timing 32-38 Instruction Timing 32-57 Instruction Timing 33 Instruction Timing 33+fw Instruction Timing 35-45 Instruction Timing 36 Instruction Timing 37+EA Instruction Timing 37, pm16:32, pm32:33 Instruction Timing 38 Instruction Timing 38-36 Instruction Timing 38-48 Instruction Timing 38-56 Instruction Timing 38/41 Instruction Timing 39 Instruction Timing 4 Instruction Timing 4+5n Instruction Timing 4/1 Instruction Timing 4/10+EA Instruction Timing 4/17+EA Instruction Timing 4/3 Instruction Timing 4/5 Instruction Timing 4/9 Instruction Timing 4/pm:8 Instruction Timing 40 Instruction Timing 40-50 Instruction Timing 40-60 Instruction Timing 40/40 Instruction Timing 41 Instruction Timing 41+TS Instruction Timing 42 Instruction Timing 42+TS Instruction Timing 42-52 Instruction Timing 43 Instruction Timing 43+TS Instruction Timing 43+m, pm:31+m Instruction Timing 43/44 Instruction Timing 44 Instruction Timing 44, pm:34 Instruction Timing
Instruction Timing 45 Instruction Timing 45+m Instruction Timing 45-52 Instruction Timing 45-55 Instruction Timing 46 Instruction Timing 46-54 Instruction Timing 48-58 Instruction Timing 49+m Instruction Timing 5 Instruction Timing 5+TS Instruction Timing 5+ts Instruction Timing 5,pm:20 Instruction Timing 5/11+EA Instruction Timing 5/3 Instruction Timing 5/5 Instruction Timing 5/6 Instruction Timing 5/8 Instruction Timing 512-534 Instruction Timing 52-58 Instruction Timing 52-60 Instruction Timing 520-540 Instruction Timing 53 Instruction Timing 53-65 Instruction Timing 55 Instruction Timing 56-63 Instruction Timing 56-67 Instruction Timing 57-72 Instruction Timing 57-82 Instruction Timing 58-83 Instruction Timing 6 Instruction Timing 6,5 Instruction Timing 6,pm:4 Instruction Timing 6-103/7-104 Instruction Timing 6-12 Instruction Timing 6-34/6-35 Instruction Timing 6-42/6-43 Instruction Timing 6-42/7-43 Instruction Timing 6/12 Instruction Timing 6/13 Instruction Timing 6/7(=); 6/10(!=) Instruction Timing 6/8 Instruction Timing 60 Instruction Timing 60-68 Instruction Timing 60-70 Instruction Timing 61-65 Instruction Timing 61-82 Instruction Timing 63-73 Instruction Timing 65-75 Instruction Timing 66-80 Instruction Timing 67-77 Instruction Timing 67-86 Instruction Timing 68 Instruction Timing 7 Instruction Timing 7+fw Instruction Timing 7+m Instruction Timing 7+m,10+m Instruction Timing 7+m/10+m Instruction Timing 7+m/3 Instruction Timing 7, pm:4*/21**, vm:19 Instruction Timing 7,pm:21 Instruction Timing 7,pm:22 Instruction Timing 7,pm:25 Instruction Timing 7-14 Instruction Timing 7-24/9-26 Instruction Timing 7-39/7-40 Instruction Timing 7-71/7-72 Instruction Timing 7/11 Instruction Timing 7/13 Instruction Timing 7/3 Instruction Timing 7/4 Instruction Timing 7/5 Instruction Timing 7/8 Instruction Timing 70 Instruction Timing 70-100 Instruction Timing 70-103 Instruction Timing 70-138 Instruction Timing 70-76 Instruction Timing 70-77/(76-83)+EA Instruction Timing 700-1000 Instruction Timing 71 Instruction Timing 71-75 Instruction Timing 71-83 Instruction Timing 72-167 Instruction Timing 72-84 Instruction Timing 72-86 Instruction Timing 73 Instruction Timing 74-155 Instruction Timing 74-88 Instruction Timing 75-105 Instruction Timing 75-85 Instruction Timing 76-87 Instruction Timing 78-91 Instruction Timing 79-93 Instruction Timing 8 Instruction Timing 8+4 per bit/(20+4 per bit)+EA Instruction Timing 8,4 Instruction Timing 8-20 Instruction Timing 8-25/10-27 Instruction Timing 8-30/9-31 Instruction Timing 8/4 Instruction Timing 8/int+32 Instruction Timing 80-90 Instruction Timing 80-90/(86-96)+EA Instruction Timing 80-93 Instruction Timing 80-97 Instruction Timing 80-98/(86-104)+EA Instruction Timing 82 Instruction Timing 82-92 Instruction Timing 82-95 Instruction Timing 83 Instruction Timing 83-87 Instruction Timing 84-86 Instruction Timing 84-90 Instruction Timing 84-94 Instruction Timing 85-89 Instruction Timing 86+4x Instruction Timing 86-92 Instruction Timing 88 Instruction Timing 89 Instruction Timing 9 Instruction Timing 9+fw Instruction Timing 9+m/5 Instruction Timing 9, pm:6*/24**, vm:22 Instruction Timing 9,pm:6 Instruction Timing 9-12 Instruction Timing 9-14 Instruction Timing 9-14/12-17 Instruction Timing 9-16 Instruction Timing 9-20 Instruction Timing 9-22 Instruction Timing 9-22/12-25 Instruction Timing 9-38 Instruction Timing 9-38/12-41 Instruction Timing 9/10 Instruction Timing 9/6 Instruction Timing 9/9 Instruction Timing 90+4x+m Instruction Timing 90-120 Instruction Timing 900-1100 Instruction Timing 91 Instruction Timing 94 Instruction Timing 94-105 Instruction Timing 95-125 Instruction Timing 95-185 Instruction Timing 96-104 Instruction Timing 98-106 Instruction Timing TS Instruction Timing TS+10 Instruction Timing TS+32 Instruction Timing hit=12, nohit=11 Instruction Timing pm:10/11 Instruction Timing pm:20/21 Instruction Timing pm:21+ts Instruction Timing pm:22 Instruction Timing pm:35 Instruction Timing pm:37+ts Instruction Timing pm:37+tx Instruction Timing pm:44 Instruction Timing pm:45+2x Instruction Timing pm:52+m Instruction Timing pm:56+m Instruction Timing pm:69 Instruction Timing pm:7 Instruction Timing pm:77+4x Instruction Timing pm:86+m Instruction Timing pm:90+m Instruction Timing pm:94+ 4x+m Instruction Timing pm:98+ 4x+m Instruction Timing ts Instruction Timing xm16:75, xm32:95; pm:70 Instruction Timing (197-207)+EA+fw Instruction Timing (40-50)+EA+fw Instruction Timing 22+16(n-1) Instruction Timing 22-25 Instruction Timing 22-25/29-32 Instruction Timing 3+5n Instruction Timing 33-35 Instruction Timing 5+n/17+n Instruction Timing 8+9n Instruction Timing (10-16)+fw Instruction Timing (103-104)+fw Instruction Timing (154,pm=143)+fw Instruction Timing (205-215)+fw Instruction Timing (375-376)+fw Instruction Timing (40-50)+EA Instruction Timing (40-50)+fw Instruction Timing (67,pm=56)+fw Instruction Timing (xm16/32=127/151,pm=124)+fw Instruction Timing (xm16/32=50/48,pm16/32=49/50)+fw Instruction Timing 10/11 Instruction Timing 103-104 Instruction Timing 13+fw Instruction Timing 154,pm=143 Instruction Timing 375-376 Instruction Timing 4,pm=3 Instruction Timing 67,pm=56 Instruction Timing ?? Instruction Timing xm16/32=127/151,pm=124 Instruction Timing xm16/32=50/48,pm16/32=49/50 Instruction Timing 119 Instruction Timing 167 Instruction Timing 1:119,0:3 Instruction Timing 1:13,0:4 Instruction Timing 1:168,0:3 Instruction Timing 1:19+TS,0:4 Instruction Timing 1:24,0:3 Instruction Timing 1:27,0:4 Instruction Timing 1:28,0:3 Instruction Timing 1:35,0:3 Instruction Timing 1:39+TS,0:3 Instruction Timing 1:41,0:3 Instruction Timing 1:44,0:4 Instruction Timing 1:46,0:3 Instruction Timing 1:53,0:4 Instruction Timing 1:56,0:4 Instruction Timing 1:59,0:3 Instruction Timing 1:73,0:3 Instruction Timing 1:79,0:3 Instruction Timing 1:84,0:3 Instruction Timing 1:99,0:3 Instruction Timing 1:TS,0:3 Instruction Timing 23+TS Instruction Timing 37 Instruction Timing 37+TS Instruction Timing 48 Instruction Timing 51 Instruction Timing 52 Instruction Timing 56 Instruction Timing 59 Instruction Timing 78 Instruction Timing 86 Instruction Timing 99 Instruction Timing 11+3(E)CX, pm:8+3(E)CX*1/25+3(E)CX*2 Instruction Timing 13+4(E)CX, pm:10+4(E)CX*1/27+4(E)CX*2, vm:25+4(E)CX Instruction Timing 13+6(E)CX, pm:7+6(E)CX*1/27+6(E)CX*2, vm:27+6(E)CX Instruction Timing 16+8(E)CX, pm:10+8(E)CX*1/30+8(E)CX*2, vm:29+8(E)CX Instruction Timing 17+5(E)CX, pm:11+5(E)CX*1/31+5(E)CX*2, vm:30+5(E)CX Instruction Timing 4+3*CX Instruction Timing 5*3,13*4,12+3(E)CX*5 Instruction Timing 5*3,7+4(E)CX*6 Instruction Timing 5*3,7+5(E)CX*6 Instruction Timing 5*3,7+7(E)CX*6 Instruction Timing 5+12(E)CX, pm:6+5(E)CX*1/26+5(E)CX*2, vm:26+5(E)CX Instruction Timing 5+15*15 Instruction Timing 5+15*N Instruction Timing 5+22*N Instruction Timing 5+4(E)CX Instruction Timing 5+4*CX Instruction Timing 5+5(E)CX Instruction Timing 5+8*N Instruction Timing 5+9*N Instruction Timing 6*3,13*4 Instruction Timing 6*3,13*4,13(E)CX*5 Instruction Timing 6*3,9(E)CX*6 Instruction Timing 6+11*N Instruction Timing 6+9*N Instruction Timing 7*3,7+3(E)CX*6 Instruction Timing 7*3,8+4(E)CX*6 Instruction Timing 7*3,9+4(E)CX*6 Instruction Timing 8+8*N Instruction Timing 9+10*CX Instruction Timing 9+15*N Instruction Timing 9+17*CX Instruction Timing 9+22*N Instruction Timing N/A
Intel Instruction Set
The following section describes the individual processor instructions in detail.
Protected Mode Exceptions
None
Real Address Mode Exceptions
None
Virtual 8086 Mode Exceptions
None
Flags Affected
/-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| | | | | | | | | | \-----------------------/ None
FPU Flags Affected
/-----------\ |C0|C1|C2|C3| |--+--+--+--| |? |* |? |? | \-----------/ C1 as described in FPU Flags Affected; C0, C2, C3 undefined.
FPU Flags Affected
/-----------\ |C0|C1|C2|C3| |--+--+--+--| |? |? |? |? | \-----------/ C0, C1, C2, C3 undefined.
FPU Flags Affected
/-----------\ |C0|C1|C2|C3| |--+--+--+--| |* |* |* |* | \-----------/ C0, C1, C2, C3 as described in FPU Flags Affected.
FPU Flags Affected
/-----------\ |C0|C1|C2|C3| |--+--+--+--| |* |* |* |* | \-----------/ C0, C1, C2, C3 as loaded.
AAA-ASCII Adjust after Addition
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |37 |AAA |X|X|X|X|X|X|ASCII adjust AL after addition | \------------------------------------------------------------------------------ /
Run the AAA instruction only following an ADD instruction that leaves a byte result in the AL register. The lower nibbles of the operands of the ADD instruction should be in the range 0 through 9 (BCD digits). In this case, the AAA instruction adjusts the AL register to contain the correct decimal digit result. If the addition produced a decimal carry, the AH register is incremented, and the CF and AF flags are set. If this same addition also produced FH in the upper nibble of AL then AH is incremented again. If there was no decimal carry, the CF and AF flags are cleared and the AH register is unchanged. In either case, the AL register is left with its top nibble set to 0. To convert the AL register to an ASCII result, follow the AAA instruction with OR AL, 30H.
Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |37 |AAA |X|X|X|X|X|X|ASCII adjust AL after addition | \------------------------------------------------------------------------------/
Description Run the AAA instruction only following an ADD instruction that leaves a byte result in the AL register. The lower nibbles of the operands of the ADD instruction should be in the range 0 through 9 (BCD digits). In this case, the AAA instruction adjusts the AL register to contain the correct decimal digit result. If the addition produced a decimal carry, the AH register is incremented, and the CF and AF flags are set. If this same addition also produced FH in the upper nibble of AL then AH is incremented again. If there was no decimal carry, the CF and AF flags are cleared and the AH register is unchanged. In either case, the AL register is left with its top nibble set to 0. To convert the AL register to an ASCII result, follow the AAA instruction with OR AL, 30H. Operation
ALcarry � AL > 0F9H; (* 1 if true *) IF ((AL AND 0FH) > 9) OR (AF = 1) THEN
AL � (AL + 6) AND 0FH; AH � AH + 1 + ALcarry; AF � 1; CF � 1;
ELSE
AF � 0; CF � 0; AL � AL AND 0FH;
FI;
Flags Affected
/-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| |? | | |? |? |* |? |* | \-----------------------/ The AF and CF flags are set if there is a decimal carry, cleared if there is no decimal carry; the OF, SF, ZF, and PF flags are undefined. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions
AAD-ASCII Adjust AX before Division
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D5 0A |AAD |X|X|X|X|X|X|ASCII adjust before division | \------------------------------------------------------------------------------/
The AAD instruction is used to prepare two unpacked BCD digits (the least- significant digit in the AL register, the most-significant digit in the AH register) for a division operation that will yield an unpacked result. This is accomplished by setting the AL register to AL+ (second byte of opcode * AH), and then clearing the AH register. The AX register is then equal to the binary equivalent of the original unpacked two-digit number.
Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D5 0A |AAD |X|X|X|X|X|X|ASCII adjust before division | \------------------------------------------------------------------------------/
Description The AAD instruction is used to prepare two unpacked BCD digits (the least- significant digit in the AL register, the most-significant digit in the AH register) for a division operation that will yield an unpacked result. This is accomplished by setting the AL register to AL+ (second byte of opcode * AH), and then clearing the AH register. The AX register is then equal to the binary equivalent of the original unpacked two-digit number. Operation
regAL = AL; regAH = AH; AL � (regAH * imm8 + regAL) AND OFFH; AH � 0; Note: imm8 has the value of the instruction's second byte. The second byte under normally assembly of this instruction will be 0A, however, explicit modification of this byte will result in the operation described above and may alter results. Flags Affected
/-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| |? | | |* |* |? |* |? | \-----------------------/ The SF, ZF, and PF flags are set according to the result; the OF, AF, and CF flags are undefined. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions
AAM-ASCII Adjust AX after Multiply
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D4 0A |AAM |X|X|X|X|X|X|ASCII adjust AX after | \------------------------------------------------------------------------------/
Run the AAM instruction only after running a MUL instruction between two unpacked BCD digits that leaves the result in the AX register. Because the result is less than 100, it is contained entirely in the AL register. The AAM instruction unpacks the AL result by dividing AL by the second byte of the opcode, leaving the quotient (most-significant digit) in the AH register and the remainder (least-significant digit) in the AL register.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D4 0A |AAM |X|X|X|X|X|X|ASCII adjust AX after | \------------------------------------------------------------------------------/ Description Run the AAM instruction only after running a MUL instruction between two unpacked BCD digits that leaves the result in the AX register. Because the result is less than 100, it is contained entirely in the AL register. The AAM instruction unpacks the AL result by dividing AL by the second byte of the opcode, leaving the quotient (most-significant digit) in the AH register and the remainder (least-significant digit) in the AL register. Operation regAL � AL; AH� regAL / imm8; AL� regAL MOD imm8; Note: imm8 has the value of the instruction's second byte. The second byte under normally assembly of this instruction will be 0A., however, explicit modification of this byte will result in the operation described above and may alter results. Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| |? | | |* |* |? |* |? | \-----------------------/ The SF, ZF, and PF flags are set according to the result; the OF, AF, and CF flags are undefined. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions ====AAS-ASCII Adjust AL after Subtraction==== ----- <pre class="western">/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |3F |AAS |X|X|X|X|X|X|ASCII adjust AL after subtraction | \------------------------------------------------------------------------------/
Run the AAS instruction only after a SUB instruction that leaves the byte result in the AL register. The lower nibbles of the operands of the SUB instruction must have been in the range of 0 through 9 (BCD digits). In this case, the AAS instruction adjusts the AL register so it contains the correct decimal digit result. If the subtraction produced a decimal carry, the AH register is decremented, and the CF and AF flags are set. If no decimal carry occurred, the CF and AF flags are cleared, and the AH register is unchanged. In either case, the AL register is left with its top nibble set to 0. To convert the AL result to an ASCII result, follow the AAS instruction with OR AL, 30H.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |3F |AAS |X|X|X|X|X|X|ASCII adjust AL after subtraction | \------------------------------------------------------------------------------/ Description Run the AAS instruction only after a SUB instruction that leaves the byte result in the AL register. The lower nibbles of the operands of the SUB instruction must have been in the range of 0 through 9 (BCD digits). In this case, the AAS instruction adjusts the AL register so it contains the correct decimal digit result. If the subtraction produced a decimal carry, the AH register is decremented, and the CF and AF flags are set. If no decimal carry occurred, the CF and AF flags are cleared, and the AH register is unchanged. In either case, the AL register is left with its top nibble set to 0. To convert the AL result to an ASCII result, follow the AAS instruction with OR AL, 30H. Operation ALborrow � AL < 6; (* 1 if true *) IF (AL AND 0FH) > 9 OR AF = 1 THEN AL � (AL - 6) AND 0FH; AH � AH - 1 - ALborrow; AF � 1; CF � 1; ELSE CF � 0; AF � 0; AL � AL AND 0FH FI; Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| |? | | |? |? |* |? |* | \-----------------------/ The AF and CF flags are set if there is a decimal carry, cleared if there is no decimal carry; the OF, SF, ZF, and PF flags are undefined. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions ====ADC-Add with Carry==== ----- <pre class="western">/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |14 ib |ADC AL,imm8 |X|X|X|X|X|X|Add with carry immediate byte to | | | | | | | | | |AL | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |15 iw |ADC AX,imm16 |X|X|X|X|X|X|Add with carry immediate word to | | | | | | | | | |AX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |15 id |ADC EAX,imm32 | | | |X|X|X|Add with carry immediate dword to | | | | | | | | | |EAX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |80 /2 ib |ADC r/m8,imm8 |X|X|X|X|X|X|Add with carry immediate byte to | | | | | | | | | |r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |81 /2 iw |ADC r/m16,imm16 |X|X|X|X|X|X|Add with carry immediate word to | | | | | | | | | |r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |81 /2 id |ADC r/m32,imm32 | | | |X|X|X|Add with carry immediate dword to | | | | | | | | | |r/m dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |83 /2 ib |ADC r/m16,imm8 |X|X|X|X|X|X|Add with carry sign-extended | | | | | | | | | |immediate byte to r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |83 /2 ib |ADC r/m32,imm8 | | | |X|X|X|Add with carry sign-extended | | | | | | | | | |immediate byte into r/m dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |10 /r |ADC r/m8,r8 |X|X|X|X|X|X|Add with carry byte register to | | | | | | | | | |r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |11 /r |ADC r/m16,r16 |X|X|X|X|X|X|Add with carry word register to | | | | | | | | | |r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |11 /r |ADC r/m32,r32 | | | |X|X|X|Add with carry dword register to | | | | | | | | | |r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |12 /r |ADC r8,r/m8 |X|X|X|X|X|X|Add with carry r/m byte to byte | | | | | | | | | |register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |13 /r |ADC r16,r/m16 |X|X|X|X|X|X|Add with carry r/m word to word | | | | | | | | | |register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |13 /r |ADC r32,r/m32 | | | |X|X|X|Add with carry r/m dword to dword | | | | | | | | | |register | \------------------------------------------------------------------------------/
The ADC instruction performs an integer addition of the two operands DEST and SRC and the carry flag, CF. The result of the addition is assigned to the first operand (DEST), and the flags are set accordingly. The ADC instruction is usually run as part of a multi-byte or multi-word addition operation. When an immediate byte value is added to a word or doubleword operand, the immediate value is first sign-extended to the size of the word or doubleword operand.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |14 ib |ADC AL,imm8 |X|X|X|X|X|X|Add with carry immediate byte to | | | | | | | | | |AL | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |15 iw |ADC AX,imm16 |X|X|X|X|X|X|Add with carry immediate word to | | | | | | | | | |AX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |15 id |ADC EAX,imm32 | | | |X|X|X|Add with carry immediate dword to | | | | | | | | | |EAX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |80 /2 ib |ADC r/m8,imm8 |X|X|X|X|X|X|Add with carry immediate byte to | | | | | | | | | |r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |81 /2 iw |ADC r/m16,imm16 |X|X|X|X|X|X|Add with carry immediate word to | | | | | | | | | |r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |81 /2 id |ADC r/m32,imm32 | | | |X|X|X|Add with carry immediate dword to | | | | | | | | | |r/m dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |83 /2 ib |ADC r/m16,imm8 |X|X|X|X|X|X|Add with carry sign-extended | | | | | | | | | |immediate byte to r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |83 /2 ib |ADC r/m32,imm8 | | | |X|X|X|Add with carry sign-extended | | | | | | | | | |immediate byte into r/m dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |10 /r |ADC r/m8,r8 |X|X|X|X|X|X|Add with carry byte register to | | | | | | | | | |r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |11 /r |ADC r/m16,r16 |X|X|X|X|X|X|Add with carry word register to | | | | | | | | | |r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |11 /r |ADC r/m32,r32 | | | |X|X|X|Add with carry dword register to | | | | | | | | | |r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |12 /r |ADC r8,r/m8 |X|X|X|X|X|X|Add with carry r/m byte to byte | | | | | | | | | |register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |13 /r |ADC r16,r/m16 |X|X|X|X|X|X|Add with carry r/m word to word | | | | | | | | | |register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |13 /r |ADC r32,r/m32 | | | |X|X|X|Add with carry r/m dword to dword | | | | | | | | | |register | \------------------------------------------------------------------------------/ Description The ADC instruction performs an integer addition of the two operands DEST and SRC and the carry flag, CF. The result of the addition is assigned to the first operand (DEST), and the flags are set accordingly. The ADC instruction is usually run as part of a multi-byte or multi-word addition operation. When an immediate byte value is added to a word or doubleword operand, the immediate value is first sign-extended to the size of the word or doubleword operand. Operation DEST � DEST + SRC + CF; Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| |* | | |* |* |* |* |* | \-----------------------/ The OF, SF, ZF, AF, CF, and PF flags are set according to the result. Protected Mode Exceptions #GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS (0) for an illegal address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions ADD-Add
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |04 ib |ADD AL,imm8 |X|X|X|X|X|X|Add immediate byte to AL | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |05 iw |ADD AX,imm16 |X|X|X|X|X|X|Add immediate word to AX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |05 id |ADD EAX,imm32 | | | |X|X|X|Add immediate dword to EAX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |80 /0 ib |ADD r/m8,imm8 |X|X|X|X|X|X|Add immediate byte to r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |81 /0 iw |ADD r/m16,imm16 |X|X|X|X|X|X|Add immediate word to r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |81 /0 id |ADD r/m32,imm32 | | | |X|X|X|Add immediate dword to r/m dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |83 /0 ib |ADD r/m16,imm8 |X|X|X|X|X|X|Add sign-extended immediate byte | | | | | | | | | |to r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |83 /0 ib |ADD r/m32,imm8 | | | |X|X|X|Add sign-extended immediate byte | | | | | | | | | |to r/m dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |00 /r |ADD r/m8,r8 |X|X|X|X|X|X|Add byte register to r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |01 /r |ADD r/m16,r16 |X|X|X|X|X|X|Add word register to r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |01 /r |ADD r/m32,r32 | | | |X|X|X|Add dword register to r/m dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |02 /r |ADD r8,r/m8 |X|X|X|X|X|X|Add r/m byte to byte register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |03 /r |ADD r16,r/m16 |X|X|X|X|X|X|Add r/m word to word register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |03 /r |ADD r32,r/m32 | | | |X|X|X|Add r/m dword to dword register | \------------------------------------------------------------------------------/
The ADD instruction performs an integer addition of the two operands (DEST and SRC). The result of the addition is assigned to the first operand (DEST ), and the flags are set accordingly. When an immediate byte is added to a word or doubleword operand, the immediate value is sign-extended to the size of the word or doubleword operand.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |04 ib |ADD AL,imm8 |X|X|X|X|X|X|Add immediate byte to AL | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |05 iw |ADD AX,imm16 |X|X|X|X|X|X|Add immediate word to AX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |05 id |ADD EAX,imm32 | | | |X|X|X|Add immediate dword to EAX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |80 /0 ib |ADD r/m8,imm8 |X|X|X|X|X|X|Add immediate byte to r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |81 /0 iw |ADD r/m16,imm16 |X|X|X|X|X|X|Add immediate word to r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |81 /0 id |ADD r/m32,imm32 | | | |X|X|X|Add immediate dword to r/m dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |83 /0 ib |ADD r/m16,imm8 |X|X|X|X|X|X|Add sign-extended immediate byte | | | | | | | | | |to r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |83 /0 ib |ADD r/m32,imm8 | | | |X|X|X|Add sign-extended immediate byte | | | | | | | | | |to r/m dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |00 /r |ADD r/m8,r8 |X|X|X|X|X|X|Add byte register to r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |01 /r |ADD r/m16,r16 |X|X|X|X|X|X|Add word register to r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |01 /r |ADD r/m32,r32 | | | |X|X|X|Add dword register to r/m dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |02 /r |ADD r8,r/m8 |X|X|X|X|X|X|Add r/m byte to byte register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |03 /r |ADD r16,r/m16 |X|X|X|X|X|X|Add r/m word to word register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |03 /r |ADD r32,r/m32 | | | |X|X|X|Add r/m dword to dword register | \------------------------------------------------------------------------------/ Description The ADD instruction performs an integer addition of the two operands (DEST and SRC). The result of the addition is assigned to the first operand (DEST ), and the flags are set accordingly. When an immediate byte is added to a word or doubleword operand, the immediate value is sign-extended to the size of the word or doubleword operand. Operation DEST � DEST + SRC; Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| |* | | |* |* |* |* |* | \-----------------------/ The OF, SF, ZF, AF, CF, and PF flags are set according to the result. Protected Mode Exceptions #GP(0) is the result is in a nonwritable segment; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS (0) for an illegal address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions AND-Logical AND
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |24 ib |AND AL,imm8 |X|X|X|X|X|X|AND immediate byte to AL | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |25 iw |AND AX,imm16 |X|X|X|X|X|X|AND immediate word to AX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |25 id |AND EAX,imm32 | | | |X|X|X|AND immediate dword to EAX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |80 /r ib |AND r/m8,imm8 |X|X|X|X|X|X|AND immediate byte to r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |81 /4 iw |AND r/m16,imm16 |X|X|X|X|X|X|AND immediate word to r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |81 /r id |AND r/m32,imm32 | | | |X|X|X|AND immediate dword to r/m dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |83 /4 ib |AND r/m16,imm8 | | | |X|X|X|AND sign-extended immediate byte | | | | | | | | | |to r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |83 /4 ib |AND r/m32,imm8 | | | |X|X|X|AND sign-extended immediate byte | | | | | | | | | |with r/m dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |20 /r |AND r/m8,r8 |X|X|X|X|X|X|AND byte register to r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |21 /r |AND r/m16,r16 |X|X|X|X|X|X|AND word register to r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |21 /r |AND r/m32,r32 | | | |X|X|X|AND dword register to r/m dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |22 /r |AND r8,r/m8 |X|X|X|X|X|X|AND r/m byte to byte register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |23 /r |AND r16,r/m16 |X|X|X|X|X|X|AND r/m word to word register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |23 /r |AND r32,r/m32 | | | |X|X|X|AND r/m dword to dword register | \------------------------------------------------------------------------------/
Each bit of the result of the AND instruction is a 1 if both corresponding bits of the operands are 1; otherwise, it becomes a 0.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |24 ib |AND AL,imm8 |X|X|X|X|X|X|AND immediate byte to AL | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |25 iw |AND AX,imm16 |X|X|X|X|X|X|AND immediate word to AX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |25 id |AND EAX,imm32 | | | |X|X|X|AND immediate dword to EAX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |80 /r ib |AND r/m8,imm8 |X|X|X|X|X|X|AND immediate byte to r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |81 /4 iw |AND r/m16,imm16 |X|X|X|X|X|X|AND immediate word to r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |81 /r id |AND r/m32,imm32 | | | |X|X|X|AND immediate dword to r/m dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |83 /4 ib |AND r/m16,imm8 | | | |X|X|X|AND sign-extended immediate byte | | | | | | | | | |to r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |83 /4 ib |AND r/m32,imm8 | | | |X|X|X|AND sign-extended immediate byte | | | | | | | | | |with r/m dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |20 /r |AND r/m8,r8 |X|X|X|X|X|X|AND byte register to r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |21 /r |AND r/m16,r16 |X|X|X|X|X|X|AND word register to r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |21 /r |AND r/m32,r32 | | | |X|X|X|AND dword register to r/m dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |22 /r |AND r8,r/m8 |X|X|X|X|X|X|AND r/m byte to byte register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |23 /r |AND r16,r/m16 |X|X|X|X|X|X|AND r/m word to word register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |23 /r |AND r32,r/m32 | | | |X|X|X|AND r/m dword to dword register | \------------------------------------------------------------------------------/ Description Each bit of the result of the AND instruction is a 1 if both corresponding bits of the operands are 1; otherwise, it becomes a 0. Operation DEST � DEST AND SRC; CF � 0; OF � 0; Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| |0 | | |* |* |? |* |0 | \-----------------------/ The CF and OF flags are cleared; the PF, SF, and ZF flags are set according to the result; the AF flag is undefined. Protected Mode Exceptions #GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS (0) for an illegal address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions ARPL-Adjust RPL Field of Selector
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |63 /r |ARPL r/m16,r16 | | |X|X|X|X|Adjust RPL of r/m16 to not less | | | | | | | | | |than RPL of r16 | \------------------------------------------------------------------------------/
The ARPL instruction has two operands. The first operand is a 16-bit memory variable or word register that contains the value of a selector. The second operand is a word register. If the RPL field ("requested privilege level"- bottom two bits) of the first operand is less than the RPL field of the second operand, the ZF flag is set and the RPL field of the first operand is increased to match the second operand. Otherwise, the ZF flag is cleared and no change is made to the first operand. The ARPL instruction appears in operating system software, not in application programs. It is used to guarantee that a selector parameter to a subroutine does not request more privilege than the caller is allowed. The second operand of the ARPL instruction is normally a register that contains the CS selector value of the caller.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |63 /r |ARPL r/m16,r16 | | |X|X|X|X|Adjust RPL of r/m16 to not less | | | | | | | | | |than RPL of r16 | \------------------------------------------------------------------------------/ Description The ARPL instruction has two operands. The first operand is a 16-bit memory variable or word register that contains the value of a selector. The second operand is a word register. If the RPL field ("requested privilege level"- bottom two bits) of the first operand is less than the RPL field of the second operand, the ZF flag is set and the RPL field of the first operand is increased to match the second operand. Otherwise, the ZF flag is cleared and no change is made to the first operand. The ARPL instruction appears in operating system software, not in application programs. It is used to guarantee that a selector parameter to a subroutine does not request more privilege than the caller is allowed. The second operand of the ARPL instruction is normally a register that contains the CS selector value of the caller. Operation IF RBL bits(0,1) of DEST < RPL bits(0,1) of SRC THEN ZF � 1; RPL bits(0,1) of DEST � RPL bits (0,1) of SRC; ELSE ZF � 0; FI; Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| | | | | |* | | | | \-----------------------/ The ZF flag is set if the RPL field of the first operand is less than that of the second operand, otherwise ZF is cleared. Protected Mode Exceptions #GP(0) if the result is a nonwritable segment; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 6; the ARPL instruction is not recognized in Real Address Mode. Virtual 8086 Mode Exceptions Interrupt 6; the ARPL instruction is not recognized in Virtual 8086 Mode. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions BOUND-Check Array Index Against Bounds
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |62 /r |BOUND r16,m16&16 | |X|X|X|X|X|Check if r16 is within m16&16 | | | | | | | | | |bounds (passes test) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |62 /r |BOUND r32,m32&32 | | | |X|X|X|Check if r32 is within m32&32 | | | | | | | | | |bounds (passes test) | \------------------------------------------------------------------------------/
The BOUND instruction ensures that a signed array index is within the limits specified by a block of memory consisting of an upper and a lower bound. Each bound uses one word when the operand-size attribute is 16-bits and a doubleword when the operand-size attribute is 32-bits. The first operand (a register) must be greater than or equal to the first bound in memory (lower bound), and less than or equal to the second bound in memory (upper bound) plus the number of bytes occupied for the operand size. If the register is not within bounds, an Interrupt 5 occurs; the return EIP points to the BOUND instruction. The bounds limit data structure is usually placed just before the array itself, making the limits addressable via a constant offset from the beginning of the array.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |62 /r |BOUND r16,m16&16 | |X|X|X|X|X|Check if r16 is within m16&16 | | | | | | | | | |bounds (passes test) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |62 /r |BOUND r32,m32&32 | | | |X|X|X|Check if r32 is within m32&32 | | | | | | | | | |bounds (passes test) | \------------------------------------------------------------------------------/ Description The BOUND instruction ensures that a signed array index is within the limits specified by a block of memory consisting of an upper and a lower bound. Each bound uses one word when the operand-size attribute is 16-bits and a doubleword when the operand-size attribute is 32-bits. The first operand (a register) must be greater than or equal to the first bound in memory (lower bound), and less than or equal to the second bound in memory (upper bound) plus the number of bytes occupied for the operand size. If the register is not within bounds, an Interrupt 5 occurs; the return EIP points to the BOUND instruction. The bounds limit data structure is usually placed just before the array itself, making the limits addressable via a constant offset from the beginning of the array. Operation IF (LeftSRC < [RightSRC] OR LeftSRC > [RightSRC + OperandSize/8]) (* Under lower bound or over upper bound *) THEN Interrupt 5; FI; Protected Mode Exceptions Interrupt 5 if the bounds test fails, as described above; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. The second operand must be a memory operand, not a register. If the BOUND instruction is run with a ModR/M byte representing a register as the second operand, #UD occurs. Real Address Mode Exceptions Interrupt 5 if the bounds test fails; Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH; Interrupt 6 if the second operand is a register. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions BSF-Bit Scan Forward
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F BC |BSF r16,r/m16 | | | |X|X|X|Bit scan forward on r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F BC |BSF r32,r/m32 | | | |X|X|X|Bit scan forward on r/m dword | \------------------------------------------------------------------------------/
The BSF instruction scans the bits in the second word or doubleword operand starting with bit 0. The ZF flag is set if all the bits are 0; otherwise, the ZF flag is cleared and the destination register is loaded with the bit index of the first set bit.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F BC |BSF r16,r/m16 | | | |X|X|X|Bit scan forward on r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F BC |BSF r32,r/m32 | | | |X|X|X|Bit scan forward on r/m dword | \------------------------------------------------------------------------------/ Description The BSF instruction scans the bits in the second word or doubleword operand starting with bit 0. The ZF flag is set if all the bits are 0; otherwise, the ZF flag is cleared and the destination register is loaded with the bit index of the first set bit. Operation IF r/m = 0 THEN ZF � 1; register � UNDEFINED; ELSE temp � 0; ZF � 0; WHILE BIT[r/m,temp] = 0 DO temp � temp + 1; register � temp; OD; FI; Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| |? | | |? |* |? |? |? | \-----------------------/ The ZF flag is set if all bits are 0; otherwise, the ZF flag is cleared. OF , SF, AF, PF, CF = undefined. Protected Mode Exceptions #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF( fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions BSR-Bit Scan Reverse
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F BD |BSR r16,r/m16 | | | |X|X|X|Bit scan reverse on r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F BD |BSR r32,r/m32 | | | |X|X|X|Bit scan reverse on r/m dword | \------------------------------------------------------------------------------/
The BSR instruction scans the bits in the second word or doubleword operand from the most significant bit to the least significant bit. The ZF flag is set if all the bits are 0; otherwise, the ZF flag is cleared and the destination register is loaded with the bit index of the first set bit found when scanning in the reverse direction.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F BD |BSR r16,r/m16 | | | |X|X|X|Bit scan reverse on r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F BD |BSR r32,r/m32 | | | |X|X|X|Bit scan reverse on r/m dword | \------------------------------------------------------------------------------/ Description The BSR instruction scans the bits in the second word or doubleword operand from the most significant bit to the least significant bit. The ZF flag is set if all the bits are 0; otherwise, the ZF flag is cleared and the destination register is loaded with the bit index of the first set bit found when scanning in the reverse direction. Operation IF r/m = 0 THEN ZF � 1; register � UNDEFINED; ELSE temp � OperandSize =1; ZF � 0; WHILE BIT[r/m,temp] = 0 DO temp � temp - 1; register � temp; OD; FI; Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| |? | | |? |* |? |? |? | \-----------------------/ The ZF flag is set if all bits are 0; otherwise, the ZF flag is cleared. OS , SF, AF, PF, CF = undefined. Protected Mode Exceptions #GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS (0) for an illegal address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions BSWAP-Byte Swap
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F C8+rd |BSWAP r32 | | | | |X|X|Swap bytes to convert little/big | | | | | | | | | |endian data in a 32-bit register | | | | | | | | | |to big/little endian form | \------------------------------------------------------------------------------/
The BSWAP instruction reverses the byte order of a 32-bit register, converting a value in little/big endian form to big/little endian form. When BSWAP is used with 16-bit operand size, the result left in the destination register is undefined.
Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F C8+rd |BSWAP r32 | | | | |X|X|Swap bytes to convert little/big | | | | | | | | | |endian data in a 32-bit register | | | | | | | | | |to big/little endian form | \------------------------------------------------------------------------------/ Description The BSWAP instruction reverses the byte order of a 32-bit register, converting a value in little/big endian form to big/little endian form. When BSWAP is used with 16-bit operand size, the result left in the destination register is undefined. Operation TEMP � r32 r32(7..0) � TEMP(31..24) r32(15..8) � TEMP(23..16) r32(23..16) � TEMP(15..8) r32(31..24) � TEMP(7.0) Notes BSWAP is not supported on Intel386 processors. Include functionally- equivalent code for Intel386 CPUs. Related Information Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions BT-Bit Test
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F A3 |BT r/m16,r16 | | | |X|X|X|Save bit in carry flag | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F A3 |BT r/m32,r32 | | | |X|X|X|Save bit in carry flag | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F BA /4 |BT r/m16,imm8 | | | |X|X|X|Save bit in carry flag | |ib | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F BA /4 |BT r/m32,imm8 | | | |X|X|X|Save bit in carry flag | |ib | | | | | | | | | \------------------------------------------------------------------------------/
The BT instruction saves the value of the bit indicated by the base (first operand) and the bit offset (second operand) into the CF flag.
Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F A3 |BT r/m16,r16 | | | |X|X|X|Save bit in carry flag | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F A3 |BT r/m32,r32 | | | |X|X|X|Save bit in carry flag | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F BA /4 |BT r/m16,imm8 | | | |X|X|X|Save bit in carry flag | |ib | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F BA /4 |BT r/m32,imm8 | | | |X|X|X|Save bit in carry flag | |ib | | | | | | | | | \------------------------------------------------------------------------------/ Description The BT instruction saves the value of the bit indicated by the base (first operand) and the bit offset (second operand) into the CF flag. Operation CF � BIT [LeftSRC, RightSRC]; Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| | | | | | | | |* | \-----------------------/ The CF flag contains the value of the selected bit. Protected Mode Exceptions #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF( fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Notes The index of the selected bit can be given by the immediate constant in the instruction or by a value in a general register. Only an 8-bit immediate value is used in the instruction. This operand is taken modulo 32, so the range of immediate bit offsets is 0..31. This allows any bit within a register to be selected. For memory bit strings, this immediate field gives only the bit offset within a word or doubleword. Immediate bit offsets larger than 31 are supported by some assemblers by using the immediate bit offset field in combination with the displacement field of the memory operand. In this case, the low-order 3 to 5 bits (3 for 16 bit operands, 5 for 32-bit operands) of the immediate bit offset are stored in the immediate bit offset field, and the high-order bits are shifted and combined with the byte displacement in the addressing mode by the assembler. The processor will ignore the high-order bits if they are not zero. When accessing a bit in memory, the processor may access four bytes starting from the memory address given by: Effective Address + (4* (BitOffset DIV 32)) for a 32-bit operand size, or two bytes starting from the memory address given by: Effective Address + (2 * (BitOffset DIV 16)) for a 16-bit operand size. It may do so even when only a single byte needs to be accessed in order to reach the given bit. You must therefore avoid referencing areas of memory close to address space holes. In particular, avoid references to memory-mapped I/O registers. Instead, use the MOV instructions to load from or store to these addresses, and use the register form of these instructions to manipulate the data. Related Information Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions BTC-Bit Test and Complement
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F BB |BTC r/m16,r16 | | | |X|X|X|Save bit in carry flag and | | | | | | | | | |complement | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F BB |BTC r/m32,r32 | | | |X|X|X|Save bit in carry flag and | | | | | | | | | |complement | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F BA /7 |BTC r/m16,imm8 | | | |X|X|X|Save bit in carry flag and | |ib | | | | | | | |complement | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F BA /7 |BTC r/m32,imm8 | | | |X|X|X|Save bit in carry flag and | |ib | | | | | | | |complement | \------------------------------------------------------------------------------/
The BTC instruction saves the value of the bit indicated by the base (first operand) and the bit offset (second operand) into the CF flag and then complements the bit.
Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F BB |BTC r/m16,r16 | | | |X|X|X|Save bit in carry flag and | | | | | | | | | |complement | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F BB |BTC r/m32,r32 | | | |X|X|X|Save bit in carry flag and | | | | | | | | | |complement | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F BA /7 |BTC r/m16,imm8 | | | |X|X|X|Save bit in carry flag and | |ib | | | | | | | |complement | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F BA /7 |BTC r/m32,imm8 | | | |X|X|X|Save bit in carry flag and | |ib | | | | | | | |complement | \------------------------------------------------------------------------------/ Description The BTC instruction saves the value of the bit indicated by the base (first operand) and the bit offset (second operand) into the CF flag and then complements the bit. Operation CF � BIT[LeftSRC, RightSRC]; BIT[LeftSRC, RightSRC] � NOT BIT[LeftSrc, RightSRC]; Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| | | | | | | | |* | \-----------------------/ The CF flag contains the complement of the selected bit. Protected Mode Exceptions #GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, and GS segments; # SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Notes The index of the selected bit can be given by the immediate constant in the instruction or by a value in a general register. Only an 8-bit immediate value may be used in the instruction. This operand is taken modulo 32, so the range of immediate bit offsets is 0..31. This allows any bit within a register to be selected. For memory bit strings, this immediate field gives only the bit offset within a word or doubleword. Immediate bit offsets larger then 31 are supported by some assemblers by using the immediate bit offset field in combination with the displacement field of the memory operand. In this case, the low-order 3 to 5 bits (3 for 16-bit operands, 5 for 32-bit operands) of the immediate bit offset are stored in the immediate bit offset field, and the high-order bits are shifted and combined with the byte displacement in the addressing mode by the assembler. The processor will ignore the high order bits if they are not zero. When accessing a bit in memory, the processor may access four bytes starting from the memory address given by: Effective Address + (4 * (BitOffset DIV 32)) for a 32-bit operand size, or two bytes starting from the memory address given by: Effective Address + (2 * (BitOffset DIV 16)) for a 16-bit operand size. It may do so even when only a single byte needs to be accessed in order to reach the given bit. Therefore, referencing areas of memory close to address space holes should be avoided. In particular, avoid references to memory-mapped I/O registers. Instead, use the MOV instructions to load from or store to these addresses, and use the register form of these instructions to manipulate the data. Related Information Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions BTR-Bit Test and Reset
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F B3 |BTR r/m16,r16 | | | |X|X|X|Save bit in carry flag and reset | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F B3 |BTR r/m32,r32 | | | |X|X|X|Save bit in carry flag and reset | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F BA /6 |BTR r/m16,imm8 | | | |X|X|X|Save bit in carry flag and reset | |ib | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F BA /6 |BTR r/m32,imm8 | | | |X|X|X|Save bit in carry flag and reset | |ib | | | | | | | | | \------------------------------------------------------------------------------/
The BTR instruction saves the value of the bit indicated by the base (first operand) and the bit offset (second operand) into the CF flag and then stores 0 in the bit.
Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F B3 |BTR r/m16,r16 | | | |X|X|X|Save bit in carry flag and reset | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F B3 |BTR r/m32,r32 | | | |X|X|X|Save bit in carry flag and reset | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F BA /6 |BTR r/m16,imm8 | | | |X|X|X|Save bit in carry flag and reset | |ib | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F BA /6 |BTR r/m32,imm8 | | | |X|X|X|Save bit in carry flag and reset | |ib | | | | | | | | | \------------------------------------------------------------------------------/ Description The BTR instruction saves the value of the bit indicated by the base (first operand) and the bit offset (second operand) into the CF flag and then stores 0 in the bit. Operation CF � BIT[LeftSRC, RightSRC]; BIT[LeftSRC, RightSRC] � 0; Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| | | | | | | | |* | \-----------------------/ The CF flag contains the value of the selected bit. Protected Mode Exceptions #GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS (0) for an illegal address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Notes The index of the selected bit can be given by the immediate constant in the instruction or by a value in a general register. Only an 8-bit immediate value is used in the instruction. This operand is taken modulo 32, so the range of immediate bit offsets is 0..31. This allows any bit within a register to be selected. For memory bit strings, this immediate field gives only the bit offset within a word or doubleword. Immediate bit offsets larger than 31 are supported by some assemblers by using the immediate bit offset field in combination with the displacement field of the memory operand. In this case, the low-order 3 to 5-bits (3 for 16-bit operands, 5 for 32-bit operands) of the immediate bit offset are stored in the immediate bit offset field, and the high-order bits are shifted and combined with the byte displacement in the addressing mode by the assembler. The processor will ignore the high-order bits if they are not zero. When accessing a bit in memory, the processor may access four bytes starting from the memory address given by: Effective Address + 4 * (BitOffset DIV 32) for a 32-bit operand size, or two bytes starting from the memory address given by: Effective Address + 2 * (BitOffset DIV 16) for a 16-bit operand size. It may do so even when only a single byte needs to be accessed in order to reach the given bit. You must therefore avoid referencing areas of memory close to address space holes. In particular, avoid references to memory-mapped I/O registers. Instead, use the MOV instructions to load from or store to these addresses, and use the register form of these instructions to manipulate the data. Related Information Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions BTS-Bit Test and Set
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F AB |BTS r/m16,r16 | | | |X|X|X|Save bit in carry flag and set | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F AB |BTS r/m32,r32 | | | |X|X|X|Save bit in carry flag and set | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F BA /5 |BTS r/m16,imm8 | | | |X|X|X|Save bit in carry flag and set | |ib | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F BA /5 |BTS r/m32,imm8 | | | |X|X|X|Save bit in carry flag and set | |ib | | | | | | | | | \------------------------------------------------------------------------------/
The BTS instruction saves the value of the bit indicated by the base (first operand) and the bit offset (second operand) into the CF flag and then stores 1 in the bit.
Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F AB |BTS r/m16,r16 | | | |X|X|X|Save bit in carry flag and set | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F AB |BTS r/m32,r32 | | | |X|X|X|Save bit in carry flag and set | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F BA /5 |BTS r/m16,imm8 | | | |X|X|X|Save bit in carry flag and set | |ib | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F BA /5 |BTS r/m32,imm8 | | | |X|X|X|Save bit in carry flag and set | |ib | | | | | | | | | \------------------------------------------------------------------------------/ Description The BTS instruction saves the value of the bit indicated by the base (first operand) and the bit offset (second operand) into the CF flag and then stores 1 in the bit. Operation CF � BIT[LeftSRC, RightSRC]; BIT[LeftSRC, RightSRC] � 1; Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| | | | | | | | |* | \-----------------------/ The CF flag contains the value of the selected bit. Protected Mode Exceptions #GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS (0) for an illegal address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Notes The index of the selected bit can be given by the immediate constant in the instruction or by a value in a general register. Only an 8-bit immediate value is used in the instruction. This operand is taken modulo 32, so the range of immediate bit offsets is 0..31. This allows any bit within a register to be selected. For memory bit strings, this immediate field gives only the bit offset within a word or doubleword. Immediate bit offsets larger than 31 are supported by some assemblers by using the immediate bit offset field in combination with the displacement field of the memory operand. In this case, the low-order 3 to 5 bits (3 for 16-bit operands, 5 for 32-bit operands) of the immediate bit offset are stored in the immediate bit offset field, and the high-order bits are shifted and combined with the byte displacement in the addressing mode by the assembler. The processor will ignore the high-order bits if they are not zero. When accessing a bit in memory, the processor may access four bytes starting from the memory address given by: Effective Address + (4 * (BitOffset DIV 32)) for a 32-bit operand size, or two bytes starting from the memory address given by: Effective Address + (2 * (BitOffset DIV 16)) for a 16-bit operand size. It may do this even when only a single byte needs to be accessed in order to get at the given bit. You must therefore be careful to avoid referencing areas of memory close to address space holes. In particular, avoid references to memory-mapped I/O registers. Instead, use the MOV instructions to load from or store to these addresses, and use the register form of these instructions to manipulate the data. Related Information Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions CALL-Call Procedure
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E8 cw |CALL rel16 |X|X|X|X|X|X|Call near, displacement relative | | | | | | | | | |to next instruction | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /2 |CALL r/m16 |X|X|X|X|X|X|Call near, register | | | | | | | | | |indirect/memory indirect | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9A cd |CALL ptr16:16 |X|X|X|X|X|X|Call intersegment, to full pointer| | | | | | | | | |given | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9A cd |CALL ptr16:16 | | |X|X|X|X|Call gate, same privilege | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9A cd |CALL ptr16:16 | | |X|X|X|X|Call gate, more privilege, no | | | | | | | | | |parameters | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9A cd |CALL ptr16:16 | | |X|X|X|X|Call gate, more privilege, x | | | | | | | | | |parameters | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9A cd |CALL ptr16:16 | | |X|X|X|X|Call to task (via task state | | | | | | | | | |segment/task gate for 286) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /3 |CALL m16:16 |X|X|X|X|X|X|Call intersegment, address at r/m | | | | | | | | | |dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /3 |CALL m16:16 | | |X|X|X|X|Call gate, same privilege | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /3 |CALL m16:16 | | |X|X|X|X|Call gate, more privilege, no | | | | | | | | | |parameters | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /3 |CALL m16:16 | | |X|X|X|X|Call gate, more privilege, x | | | | | | | | | |parameters | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /3 |CALL m16:16 | | |X|X|X|X|Call to task (via task state | | | | | | | | | |segment/task gate for 286) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E8 cd |CALL rel32 | | | |X|X|X|Call near, displacement relative | | | | | | | | | |to next instruction | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /2 |CALL r/m32 | | | |X|X|X|Call near, register | | | | | | | | | |indirect/memory indirect | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9A cp |CALL ptr16:32 | | | |X|X|X|Call intersegment, to full pointer| | | | | | | | | |given | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9A cp |CALL ptr16:32 | | | |X|X|X|Call gate, same privilege | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9A cp |CALL ptr16:32 | | | |X|X|X|Call gate, more privilege, no | | | | | | | | | |parameters | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9A cp |CALL ptr16:32 | | | |X|X|X|Call gate, more privilege, x | | | | | | | | | |parameters | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9A cp |CALL ptr16:32 | | | |X|X|X|Call to task | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /3 |CALL m16:32 | | | |X|X|X|Call intersegment, address at r/m | | | | | | | | | |fword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /3 |CALL m16:32 | | | |X|X|X|Call gate, same privilege | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /3 |CALL m16:32 | | | |X|X|X|Call gate, more privilege, no | | | | | | | | | |parameters | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /3 |CALL m16:32 | | | |X|X|X|Call gate, more privilege, x | | | | | | | | | |parameters | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /3 |CALL m16:32 | | | |X|X|X|Call to task | \------------------------------------------------------------------------------/
The CALL instruction causes the procedure named in the operand to be run. When the procedure is complete (a return instruction is run within the procedure), processing continues at the instruction that follows the CALL instruction. The action of the different forms of the instruction are described below. Near calls are those with destination of type r/m16, r/m32, rel16, rel32; changing or saving the segment register value is not necessary. The CALL rel16 and CALL rel32 forms add a signed offset to the address of the instruction following the CALL instruction to determine the destination. The rel16 form is used when the instruction's operand-size attribute is 16- bits; rel32 is used when the operand-size attribute is 32-bits. The result is stored in the 32-bit EIP register. With rel16, the upper 16-bits of the EIP register are cleared, resulting in an offset whose value does not exceed 16-bits. CALL r/m16 and CALL r/m32 specify a register or memory location from which the absolute segment offset is fetched. The offset fetched from r/m is 32-bits for an operand-size attribute of 32 (r/m32), or 16-bits for an operand-size of 16 (r/m16). The offset of the instruction following the CALL instruction is pushed onto the stack. It will be popped by a near RET instruction within the procedure. The CS register is not changed by this form of CALL. The far calls, CALL ptr:16 and CALL ptr16:32, use a four-byte or six-byte operand as a long pointer to the procedure called. The CALL m16:16 and m16: 32 forms fetch the long pointer from the memory location specified ( indirection). In Real Address Mode or Virtual 8086 Mode, the long pointer provides 16-bits for the CS register and 16 or 32-bits for the EIP register (depending on the operand-size attribute). These forms of the instruction push both the CS and IP or EIP registers as a return address. In Protected Mode, both long pointer forms consult the AR byte in the descriptor indexed by the selector part of the long pointer. Depending on the value of the AR byte, the call will perform one of the following types of control transfers: �A far call to the same protection level �An inter-protection level far call �A task switch A CALL-indirect-thru-memory, which uses the stack pointer (ESP) as a base register, references memory before the CALL. The base used is the value of the ESP before the instruction runs. For more information on Protected Mode control transfers, refer to the Intel documentation.
Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E8 cw |CALL rel16 |X|X|X|X|X|X|Call near, displacement relative | | | | | | | | | |to next instruction | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /2 |CALL r/m16 |X|X|X|X|X|X|Call near, register | | | | | | | | | |indirect/memory indirect | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9A cd |CALL ptr16:16 |X|X|X|X|X|X|Call intersegment, to full pointer| | | | | | | | | |given | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9A cd |CALL ptr16:16 | | |X|X|X|X|Call gate, same privilege | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9A cd |CALL ptr16:16 | | |X|X|X|X|Call gate, more privilege, no | | | | | | | | | |parameters | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9A cd |CALL ptr16:16 | | |X|X|X|X|Call gate, more privilege, x | | | | | | | | | |parameters | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9A cd |CALL ptr16:16 | | |X|X|X|X|Call to task (via task state | | | | | | | | | |segment/task gate for 286) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /3 |CALL m16:16 |X|X|X|X|X|X|Call intersegment, address at r/m | | | | | | | | | |dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /3 |CALL m16:16 | | |X|X|X|X|Call gate, same privilege | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /3 |CALL m16:16 | | |X|X|X|X|Call gate, more privilege, no | | | | | | | | | |parameters | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /3 |CALL m16:16 | | |X|X|X|X|Call gate, more privilege, x | | | | | | | | | |parameters | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /3 |CALL m16:16 | | |X|X|X|X|Call to task (via task state | | | | | | | | | |segment/task gate for 286) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E8 cd |CALL rel32 | | | |X|X|X|Call near, displacement relative | | | | | | | | | |to next instruction | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /2 |CALL r/m32 | | | |X|X|X|Call near, register | | | | | | | | | |indirect/memory indirect | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9A cp |CALL ptr16:32 | | | |X|X|X|Call intersegment, to full pointer| | | | | | | | | |given | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9A cp |CALL ptr16:32 | | | |X|X|X|Call gate, same privilege | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9A cp |CALL ptr16:32 | | | |X|X|X|Call gate, more privilege, no | | | | | | | | | |parameters | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9A cp |CALL ptr16:32 | | | |X|X|X|Call gate, more privilege, x | | | | | | | | | |parameters | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9A cp |CALL ptr16:32 | | | |X|X|X|Call to task | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /3 |CALL m16:32 | | | |X|X|X|Call intersegment, address at r/m | | | | | | | | | |fword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /3 |CALL m16:32 | | | |X|X|X|Call gate, same privilege | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /3 |CALL m16:32 | | | |X|X|X|Call gate, more privilege, no | | | | | | | | | |parameters | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /3 |CALL m16:32 | | | |X|X|X|Call gate, more privilege, x | | | | | | | | | |parameters | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /3 |CALL m16:32 | | | |X|X|X|Call to task | \------------------------------------------------------------------------------/ Description The CALL instruction causes the procedure named in the operand to be run. When the procedure is complete (a return instruction is run within the procedure), processing continues at the instruction that follows the CALL instruction. The action of the different forms of the instruction are described below. Near calls are those with destination of type r/m16, r/m32, rel16, rel32; changing or saving the segment register value is not necessary. The CALL rel16 and CALL rel32 forms add a signed offset to the address of the instruction following the CALL instruction to determine the destination. The rel16 form is used when the instruction's operand-size attribute is 16- bits; rel32 is used when the operand-size attribute is 32-bits. The result is stored in the 32-bit EIP register. With rel16, the upper 16-bits of the EIP register are cleared, resulting in an offset whose value does not exceed 16-bits. CALL r/m16 and CALL r/m32 specify a register or memory location from which the absolute segment offset is fetched. The offset fetched from r/m is 32-bits for an operand-size attribute of 32 (r/m32), or 16-bits for an operand-size of 16 (r/m16). The offset of the instruction following the CALL instruction is pushed onto the stack. It will be popped by a near RET instruction within the procedure. The CS register is not changed by this form of CALL. The far calls, CALL ptr:16 and CALL ptr16:32, use a four-byte or six-byte operand as a long pointer to the procedure called. The CALL m16:16 and m16: 32 forms fetch the long pointer from the memory location specified ( indirection). In Real Address Mode or Virtual 8086 Mode, the long pointer provides 16-bits for the CS register and 16 or 32-bits for the EIP register (depending on the operand-size attribute). These forms of the instruction push both the CS and IP or EIP registers as a return address. In Protected Mode, both long pointer forms consult the AR byte in the descriptor indexed by the selector part of the long pointer. Depending on the value of the AR byte, the call will perform one of the following types of control transfers: �A far call to the same protection level �An inter-protection level far call �A task switch A CALL-indirect-thru-memory, which uses the stack pointer (ESP) as a base register, references memory before the CALL. The base used is the value of the ESP before the instruction runs. For more information on Protected Mode control transfers, refer to the Intel documentation. Operation IF rel/16 or rel32 type of call THEN (* near relative call *) IF OperandSize = 16 THEN Push(IP); EIP � (EIP + rel16) AND 0000FFFFH; ELSE (* OperandSize = 32 *) Push(EIP); EIP � EIP + rel32; FI; FI; IF r/m16 or r/m32 type of call THEN (* near absolute call *) IF OperandSize = 16 THEN Push(IP); EIP � [r/m16] AND 0000FFFFH; ELSE (*OperandSize = 32 *) Push(EIP); EIP �[r/m32] FI; FI IF (PE = 0 OR (PE = 1 AND VM = 1)) (* real mode or virtual 8086 mode *) AND instruction = far CALL (* i.e., operand type is m16:16, m16:32, ptr16:16, ptr16:32*) THEN IF OperandSize = 16 THEN Push(CS); Push(IP); (* address of next instruction; 16 bits *) ELSE Push(CS); (* padded with 16 high-order bits *) Push(EIP); (* address of next instruction; 32 bits *) FI; IF operand type is m16:16 or m16:32 THEN (* indirect far call *) IF OperandSize = 16 THEN CS:IP � [m16:16]; EIP � EIP AND 0000FFFFH; (* clear upper 16 bits *) ELSE (* OperandSize = 32 *) CS:EIP � [m16:32[; FI; FI; IF operand type is ptr:16 or ptr16:32 THEN (* direct far call *) IF OperandSize = 16 THEN CS:IP � ptr:16; EIP � EIP AND 0000FFFFH; (* clear upper 16 bits *) ELSE (* OperandSize = 32 *) CS:EIP � ptr16:32; FI; FI; FI; IF (PE = 1 AND VM = 0) (* Protected mode, not V86 mode *) AND instruction = far CALL THEN If indirect, then check access of EA doubleword; #GP(0) if limit violation; New CS selector must not be null else #GP(0); Check that new CS selector index is within its descriptor table limits; else #GP(new CS selector); Examine AR byte of selected descriptor for various legal values; depending on value: go to CONFORMING-CODE-SEGMENT; go to NONCONFORMING-CODE-SEGMENT; go to CALL-GATE; go to TASK-GATE; go to TASK-STATE-SEGMENT; ELSE #GP(code segment selector); FI; CONFORMING-CODE-SEGMENT: DPL must be ó CPL ELSE #GP(code segment selector); Segment must be present ELSE #NP(code segment selector); Stack must be big enough for return address ELSE #SS(0); Instruction pointer must be in code segment limit ELSE #GP(0); Load code segment descriptor into CS register; Load CS with new code segment selector; Load EIP with zero-extend(new offset); IF OperandSize=16 THEN EIP � EIP AND 0000FFFFH; FI; NONCONFORMING-CODE-SEGMENT: RPL must be ó CPL ELSE #GP(code segment selector) DPL must be = CPL ELSE #GP(code segment selector) Segment must be present ELSE #NP(code segment selector) Stack must be big enough for return address ELSE #SS(0) Instruction pointer must be in code segment limit ELSE #GP(0) Load code segment descriptor into CS register Load CS with new code segment selector Set RPL of CS to CPL Load EIP with zero-extend(new offset); IF OperandSize=16 THEN EIP � EIP AND 0000FFFFH; FI; CALL-GATE Call gate DPL must be ò CPL ELSE #GP(call gate elector) Call gate DPL must be ò RPL ELSE #GP(call gate elector) Call gate just be present ELSE #NP(call gate selector) Examine code segment selector in call gate descriptor: Selector must not be null ELSE #GP(0) Selector must be within its descriptor table limits ELSE #GP(code segment selector) AR byte of selected descriptor must indicate code segment ELSE #GP(code segment selector) DPL of selected descriptor must be ó CPL ELSE #GP(code segment selector) IF non-conforming code segment AND DPL < CPL THEN go to MORE-PRIVILEGE ELSE go to SAME-PRIVILEGE FI; MORE-PRIVILEGE: Get new SS selector for new privilege level from TSS Check selector and descriptor for new SS: Selector must not be null ELSE #TS(0) Selector index must be within its descriptor table limits ELSE #TS(SS selector) Selector's RPL must equal DPL of code segment ELSE #TS(SS selector) Stack segment DPL must equal DPL of code segment ELSE #TS(SS selector) Descriptor must indicate writable data segment ELSE #TS(SS selector) Segment present ELSE #SS(SS selector) IF OperandSize=32 THEN New stack must have room for parameters plus 16 bytes ELSE #SS(SS selector) EIP must be in code segment limit ELSE #GP(0) Load new SS:eSP value from TSS Load new CS:EIP value from gate ELSE New stack must have room for parameters plus 8 bytes ELSE #SS(SS selector) IP must be in code segment limit ELSE #GP(0) Load new SS:eSP value from TSS Load new CS:IP value from gate FI; Load CS descriptor Load SS descriptor Push long pointer of old stack onto new stack Get word count from call gate, mask to 5 bits Copy parameters from old stack onto new stack Push return address onto new stack Set CPL to stack segment DPL Set RPL of CS to CPL SAME-PRIVILEGE: IF OperandSize=32 THEN Stack must have room for 6-byte return address (padded to 8 bytes) ELSE #SS(0) EIP must be within code segment limit ELSE #GP(0) Load CS:EIP from gate ELSE Stack must have room for 4-byte return address ELSE #SS(0) IP must be within code segment limit ELSE #GP(0) Load CS:IP from gate FI; Push return address onto stack Load code segment descriptor into CS register Set RPL of CS to CPL TASK-GATE: Task gate DPL must be ó CPL ELSE #TS(gate selector) Task gate DPL must be ó RPL ELSE #TS(gate selector) Task Gate must be present ELSE #NP(gate selector) Examine selector to TSS, given in Task Gate descriptor: Must specify global in the local/global bit ELSE #TS(TSS selector) Index must be within GDT limits ELSE #TS(TSS selector) TSS descriptor AR byte must specify nonbusy TSS ELSE #TS(Tss selector) Task State Segment must be present ELSE #NP(TSS selector) SWITCH-TASKS (with nesting) to TSS IP must be in code segment limit ELSE #TS(0) TASK-STATE-SEGMENT TSS DPL must be ó CPL ELSE #TS(TSS selector) TSS DPL must be ó RPL ELSE #TS(TSS selector) TSS descriptor AR byte must specify available TSS ELSE #TS(TSS selector) Task State Segment must be present ELSE #NP(TSS selector) SWITCH-TASKS (with nesting) to TSS IP must be in code segment limit ELSE #TS(0) Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| | | | | | | | | | \-----------------------/ All flags are affected if a task switch occurs; no flags are affected if a task switch does not occur. Protected Mode Exceptions For far calls: #GP, #NP, #SS, and #TS, as indicated in the "Operation" section. For near direct calls: #GP(0) if procedure location is beyond the code segment limits; #SS(0) if pushing the return address exceeds the bounds of the stack segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. For a near indirect call: #GP(0) for an illegal memory operand effective address is the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #GP(0) if the indirect offset obtained is beyond the code segment limits; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Notes Any far call from a 32-bit code segment to a 16-bit code segment should be made from the first 64 Kbytes of the 32-bit code segment, because the operand-size attribute of the instruction is set to 16, allowing only a 16- bit return address offset to be saved. Related Information Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions CBW/CWDE-Convert Byte to Word/Convert Word to Doubleword
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |98 |CBW |X|X|X|X|X|X|AX � sign extend of AL | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |98 |CWDE | | | |X|X|X|EAX � sign-extend of AX | \------------------------------------------------------------------------------/
The CBW instruction converts the signed byte in the AL register to a signed word in the AX register by extending the most significant bit of the AL register (the sign bit) into all of the bits of the AH register. The CWDE instruction converts the signed word in the AX register to a doubleword in the EAX register by extending the most significant bit of the AX register into the two most significant bytes of the EAX register. Note that the CWDE instruction is different from the CWD instruction. The CWD instruction uses the DX:AX register pair rather than the EAX register as a destination.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |98 |CBW |X|X|X|X|X|X|AX � sign extend of AL | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |98 |CWDE | | | |X|X|X|EAX � sign-extend of AX | \------------------------------------------------------------------------------/ Description The CBW instruction converts the signed byte in the AL register to a signed word in the AX register by extending the most significant bit of the AL register (the sign bit) into all of the bits of the AH register. The CWDE instruction converts the signed word in the AX register to a doubleword in the EAX register by extending the most significant bit of the AX register into the two most significant bytes of the EAX register. Note that the CWDE instruction is different from the CWD instruction. The CWD instruction uses the DX:AX register pair rather than the EAX register as a destination. Operation IF OperandSize = 16 (* instruction = CBW *) THEN AX � Sign Extend(AL); ELSE (* OperandSize = 32, instruction = CWDE *) EAX � Sign Extend(AX); FI; Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions CDQ-Convert Double to Quad See entry for CWD/CDQ-Convert Word to Double/Convert Double to Quad. CLC-Clear Carry Flag
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F8 |CLC |X|X|X|X|X|X|Clear carry flag | \------------------------------------------------------------------------------/
The CLC instruction clears the CF flag. It does not affect other flags or registers.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F8 |CLC |X|X|X|X|X|X|Clear carry flag | \------------------------------------------------------------------------------/ Description The CLC instruction clears the CF flag. It does not affect other flags or registers. Operation CF � 0; Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| | | | | | | | |0 | \-----------------------/ The CF flag is cleared. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions CLD-Clear Direction Flag
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FC |CLD |X|X|X|X|X|X|Clear direction flag | \------------------------------------------------------------------------------/
The CLD instruction clears the direction flag. No other flags or registers are affected. After a CLD instruction is run, string operations will increment the index registers (SI and/or DI) that they use.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FC |CLD |X|X|X|X|X|X|Clear direction flag | \------------------------------------------------------------------------------/ Description The CLD instruction clears the direction flag. No other flags or registers are affected. After a CLD instruction is run, string operations will increment the index registers (SI and/or DI) that they use. Operation DF � 0; Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| | |0 | | | | | | | \-----------------------/ The DF flag is cleared. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions CLI-Clear Interrupt Flag
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FA |CLI |X|X|X|X|X|X|Clear interrupt flag; interrupts | | | | | | | | | |disabled when interrupt flag | | | | | | | | | |cleared | \------------------------------------------------------------------------------/
The CLI instruction clears the IF flag if the current privilege level is at least as privileged as IOPL. No other flags are affected. External interrupts are not recognized at the end of the CLI instruction from that point on until the IF flag is set.
Decision Table Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FA |CLI |X|X|X|X|X|X|Clear interrupt flag; interrupts | | | | | | | | | |disabled when interrupt flag | | | | | | | | | |cleared | \------------------------------------------------------------------------------/ Description The CLI instruction clears the IF flag if the current privilege level is at least as privileged as IOPL. No other flags are affected. External interrupts are not recognized at the end of the CLI instruction from that point on until the IF flag is set. Operation IF PE = 0 THEN IF �0; ELSE IF VM = 0 (* Running in protected Mode *) THEN IF IOPL = 3 THEN IF � 0; ELSE IF CPL ó IOPL THEN IF � 0; ELSE #GP(0); FI; FI; ELSE (* Running in Virtual-8086 mode *) IF IOPL = 3 THEN IF � ELSE #GP(0); FI; FI; FI; Decision Table The following decision table indicates which action in the lower portion of the table is taken given the conditions in the upper portion of the table. /--------------------------------------------------\ |PE = | 0 | 1 | 1 | 1 | 1 | |----------+-------+-------+-------+-------+-------| |VM = | - | 0 | - | 0 | 1 | |----------+-------+-------+-------+-------+-------| |CPL | - |óIOPL | - |>IOPL | - | |----------+-------+-------+-------+-------+-------| |IOPL | - | - | = 3 | - | < 3 | |----------+-------+-------+-------+-------+-------| |IF � 0 | Y | Y | Y | | | |----------+-------+-------+-------+-------+-------| |#GP(0) | | | | Y | Y | \--------------------------------------------------/ Notes: - Don't care Blank Action Not Taken Y Action in Column 1 taken Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| | | |0 | | | | | | \-----------------------/ IF cleared. Protected Mode Exceptions #GP(0) if the current privilege level is greater (has less privilege) than the I/O privilege level in the flags register. The I/O privilege level specifies the least privileged level at which I/O can be performed. Virtual 8086 Mode Exceptions #GP(0) as for protected mode. Related Information Decision Table Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions CLTS-Clear Task-Switched Flag in CR0
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 06 |CLTS | | |X|X|X|X|Clear task-switched flag | \------------------------------------------------------------------------------/
The CLTS instruction clears the task-switched (TS) flag in the CR0 register . This flag is set by the processor every time a task switch occurs. The TS flag is used to manage processor extensions as follows: �Every processing of an ESC instruction is trapped if the TS flag is set. �Processing of a WAIT instruction is trapped if the MP flag and the TS flag are both set. Thus, if a task switch was made after an ESC instruction was begun, the floating-point unit's context may need to be saved before a new ESC instruction can be issued. The fault handler saves the context and clears the TS flag. The CLTS instruction appears in operating system software, not in application programs. It is a privileged instruction that can only be run at privilege level 0.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 06 |CLTS | | |X|X|X|X|Clear task-switched flag | \------------------------------------------------------------------------------/ Description The CLTS instruction clears the task-switched (TS) flag in the CR0 register . This flag is set by the processor every time a task switch occurs. The TS flag is used to manage processor extensions as follows: �Every processing of an ESC instruction is trapped if the TS flag is set. �Processing of a WAIT instruction is trapped if the MP flag and the TS flag are both set. Thus, if a task switch was made after an ESC instruction was begun, the floating-point unit's context may need to be saved before a new ESC instruction can be issued. The fault handler saves the context and clears the TS flag. The CLTS instruction appears in operating system software, not in application programs. It is a privileged instruction that can only be run at privilege level 0. Operation TS Flag in CR0 � 0; Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| | | | | | | | | | \-----------------------/ The TS flag is cleared (the TS flag is in the CR0 register, not the flags register). Protected Mode Exceptions #GP(0) if the CLTS instruction is run with a current privilege level other than 0. Real Address Mode Exceptions None (valid in Real Address Mode to allow initialization for Protected Mode ). Virtual 8086 Mode Exceptions Same exceptions as in Protected Mode. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions CMC-Complement Carry Flag
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F5 |CMC |X|X|X|X|X|X|Complement carry flag | \------------------------------------------------------------------------------/
The CMC instruction reverses the setting of the CF flag. No other flags are affected.
Description Flags Affected Operation Protected Mode Exceptions Protected Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F5 |CMC |X|X|X|X|X|X|Complement carry flag | \------------------------------------------------------------------------------/ Description The CMC instruction reverses the setting of the CF flag. No other flags are affected. Operation CF � NOT CF; Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| | | | | | | | |* | \-----------------------/ The CF flag contains the complement of its original value. Related Information Description Flags Affected Operation Protected Mode Exceptions Protected Mode Exceptions Virtual 8086 Mode Exceptions CMP-Compare Two Operands
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |3C ib |CMP AL,imm8 |X|X|X|X|X|X|Compare immediate byte to AL | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |3D iw |CMP AX,imm16 |X|X|X|X|X|X|Compare immediate word to AX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |3D id |CMP EAX,imm32 | | | |X|X|X|Compare immediate dword to EAX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |80 /7 ib |CMP r/m8,imm8 |X|X|X|X|X|X|Compare immediate byte to r/m byte| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |81 /7 iw |CMP r/m16,imm16 |X|X|X|X|X|X|Compare immediate word to r/m word| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |81 /7 id |CMP r/m32,imm32 | | | |X|X|X|Compare immediate dword to r/m | | | | | | | | | |dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |83 /7 ib |CMP r/m16,imm8 |X|X|X|X|X|X|Compare sign-extended immediate | | | | | | | | | |byte to r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |83 /7 ib |CMP r/m32,imm8 | | | |X|X|X|Compare sign-extended immediate | | | | | | | | | |byte to r/m dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |38 /r |CMP r/m8,r8 |X|X|X|X|X|X|Compare byte register to r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |39 /r |CMP r/m16,r16 |X|X|X|X|X|X|Compare word register to r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |39 /r |CMP r/m32,r32 | | | |X|X|X|Compare dword register to r/m | | | | | | | | | |dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |3A /r |CMP r8,r/m8 |X|X|X|X|X|X|Compare r/m byte to byte register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |3B /r |CMP r16,r/m16 |X|X|X|X|X|X|Compare r/m word to word register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |3B /r |CMP r32,r/m32 | | | |X|X|X|Compare r/m dword to dword | | | | | | | | | |register | \------------------------------------------------------------------------------/
The CMP instruction subtracts the second operand from the first but, unlike the SUB instruction, does not store the result; only the flags are changed. The CMP instruction is typically used in conjunction with conditional jumps and the SETcc instruction. (Refer to Appendix D for the list of signed and unsigned flag tests provided.) If an operand greater than one byte is compared to an immediate byte, the byte value is first sign-extended.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |3C ib |CMP AL,imm8 |X|X|X|X|X|X|Compare immediate byte to AL | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |3D iw |CMP AX,imm16 |X|X|X|X|X|X|Compare immediate word to AX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |3D id |CMP EAX,imm32 | | | |X|X|X|Compare immediate dword to EAX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |80 /7 ib |CMP r/m8,imm8 |X|X|X|X|X|X|Compare immediate byte to r/m byte| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |81 /7 iw |CMP r/m16,imm16 |X|X|X|X|X|X|Compare immediate word to r/m word| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |81 /7 id |CMP r/m32,imm32 | | | |X|X|X|Compare immediate dword to r/m | | | | | | | | | |dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |83 /7 ib |CMP r/m16,imm8 |X|X|X|X|X|X|Compare sign-extended immediate | | | | | | | | | |byte to r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |83 /7 ib |CMP r/m32,imm8 | | | |X|X|X|Compare sign-extended immediate | | | | | | | | | |byte to r/m dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |38 /r |CMP r/m8,r8 |X|X|X|X|X|X|Compare byte register to r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |39 /r |CMP r/m16,r16 |X|X|X|X|X|X|Compare word register to r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |39 /r |CMP r/m32,r32 | | | |X|X|X|Compare dword register to r/m | | | | | | | | | |dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |3A /r |CMP r8,r/m8 |X|X|X|X|X|X|Compare r/m byte to byte register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |3B /r |CMP r16,r/m16 |X|X|X|X|X|X|Compare r/m word to word register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |3B /r |CMP r32,r/m32 | | | |X|X|X|Compare r/m dword to dword | | | | | | | | | |register | \------------------------------------------------------------------------------/ Description The CMP instruction subtracts the second operand from the first but, unlike the SUB instruction, does not store the result; only the flags are changed. The CMP instruction is typically used in conjunction with conditional jumps and the SETcc instruction. (Refer to Appendix D for the list of signed and unsigned flag tests provided.) If an operand greater than one byte is compared to an immediate byte, the byte value is first sign-extended. Operation LeftSRC - SignExtend(RightSRC); (* CMP does not store a result; its purpose is to set the flags *) Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| |* | | |* |* |* |* |* | \-----------------------/ The OF, SF, ZF, AF, PF, and CF flags are set according to the result. Protected Mode Exceptions #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF( fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions CMPS/CMPSB/CMPSW/CMPSD-Compare String Operands
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |A6 |CMPS m8,m8 |X|X|X|X|X|X|Compare bytes ES:[(E)DI] (second | | | | | | | | | |operand) with [(E)SI] (first | | | | | | | | | |operand) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |A7 |CMPS m16,m16 |X|X|X|X|X|X|Compare words ES:[(E)DI] (second | | | | | | | | | |operand) with [(E)SI] (first | | | | | | | | | |operand) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |A7 |CMPS m32,m32 | | | |X|X|X|Compare dwords ES:[(E)DI] (second | | | | | | | | | |operand) with [(E)SI] (first | | | | | | | | | |operand) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |A6 |CMPSB |X|X|X|X|X|X|Compare bytes ES:[(E)DI] with | | | | | | | | | |DS:[(E)SI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |A7 |CMPSW |X|X|X|X|X|X|Compare words ES:[(E)DI] with | | | | | | | | | |DS:[(E)SI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |A7 |CMPSD | | | |X|X|X|Compare dwords ES:[(E)DI] with | | | | | | | | | |DS:[(E)SI] | \------------------------------------------------------------------------------/
The CMPS instruction compares the byte, word, or doubleword pointed to by the source-index register with the byte, word, or doubleword pointed to by the destination-index register. If the address-size attribute of this instruction of 16-bits, the SI and DI registers will be used for source- and destination-index registers; otherwise the ESI and EDI registers will be used. Load the correct index values into the SI and DI (or ESI and EDI) registers before running the CMPS instruction. The comparison is done by subtracting the operand indexed by the destination-index register from the operand indexed by the the source-index register. Note that the direction of subtraction for the CMPS instruction is [SI] - [ DI] or [ESI] - [EDI]. The left operand (SI or ESI) is the source and the right operand (DI or EDI) is the destination. This is the reverse of the usual Intel convention in which the left operand is the destination and the right operand is the source. The result of the subtraction is not stored; only the flags reflect the change. The types of the operands determine whether bytes, words, or doublewords are compared. For the first operand (SI or ESI), the DS register is used, unless a segment override byte is present. The second operand (DI or EDI) must be addressable from the ES register; no segment override is possible. After the comparison is made, both the source-index register and destination-index register are automatically advanced. If the DF flag is 0 (a CLD instruction was run), the registers increment; if the DF flag is 1 ( an STD instruction was run), the registers decrement. The registers increment or decrement by 1 if a byte is compared, by 2 if a word is compared, or by 4 if a doubleword is compared. The CMPSB, CMPSW and CMPSD instructions are synonyms for the byte, word, and doubleword CMPS instructions, respectively. The CMPS instruction can be preceded by the REPE or REPNE prefix for block comparison of CX or ECX bytes, words, or doublewords. Refer to the description of the REP instruction for more information on this operation.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |A6 |CMPS m8,m8 |X|X|X|X|X|X|Compare bytes ES:[(E)DI] (second | | | | | | | | | |operand) with [(E)SI] (first | | | | | | | | | |operand) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |A7 |CMPS m16,m16 |X|X|X|X|X|X|Compare words ES:[(E)DI] (second | | | | | | | | | |operand) with [(E)SI] (first | | | | | | | | | |operand) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |A7 |CMPS m32,m32 | | | |X|X|X|Compare dwords ES:[(E)DI] (second | | | | | | | | | |operand) with [(E)SI] (first | | | | | | | | | |operand) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |A6 |CMPSB |X|X|X|X|X|X|Compare bytes ES:[(E)DI] with | | | | | | | | | |DS:[(E)SI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |A7 |CMPSW |X|X|X|X|X|X|Compare words ES:[(E)DI] with | | | | | | | | | |DS:[(E)SI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |A7 |CMPSD | | | |X|X|X|Compare dwords ES:[(E)DI] with | | | | | | | | | |DS:[(E)SI] | \------------------------------------------------------------------------------/ Description The CMPS instruction compares the byte, word, or doubleword pointed to by the source-index register with the byte, word, or doubleword pointed to by the destination-index register. If the address-size attribute of this instruction of 16-bits, the SI and DI registers will be used for source- and destination-index registers; otherwise the ESI and EDI registers will be used. Load the correct index values into the SI and DI (or ESI and EDI) registers before running the CMPS instruction. The comparison is done by subtracting the operand indexed by the destination-index register from the operand indexed by the the source-index register. Note that the direction of subtraction for the CMPS instruction is [SI] - [ DI] or [ESI] - [EDI]. The left operand (SI or ESI) is the source and the right operand (DI or EDI) is the destination. This is the reverse of the usual Intel convention in which the left operand is the destination and the right operand is the source. The result of the subtraction is not stored; only the flags reflect the change. The types of the operands determine whether bytes, words, or doublewords are compared. For the first operand (SI or ESI), the DS register is used, unless a segment override byte is present. The second operand (DI or EDI) must be addressable from the ES register; no segment override is possible. After the comparison is made, both the source-index register and destination-index register are automatically advanced. If the DF flag is 0 (a CLD instruction was run), the registers increment; if the DF flag is 1 ( an STD instruction was run), the registers decrement. The registers increment or decrement by 1 if a byte is compared, by 2 if a word is compared, or by 4 if a doubleword is compared. The CMPSB, CMPSW and CMPSD instructions are synonyms for the byte, word, and doubleword CMPS instructions, respectively. The CMPS instruction can be preceded by the REPE or REPNE prefix for block comparison of CX or ECX bytes, words, or doublewords. Refer to the description of the REP instruction for more information on this operation. Operation IF (instruction = CMPSD) OR (instruction has operands of type DWORD) THEN OperandSize � 32; ELSE OperandSize � 16; FI; IF AddressSize = 16 THEN use SI for source-index and DI for destination-index ELSE (* AddressSize = 32 *) use ESI for source-index and EDI for destination-index; FI; IF byte type of instruction THEN set ZF based on [source-index] - [destination-index]; (* byte comparison *) IF DF = 0 THEN IncDec � 1 ELSE IncDec � -1; FI; ELSE IF OperandSize = 16 THEN set ZF based on [source-index] - [destination-index]; (* word comparison *) IF DF = 0 THEN IncDec � 2 ELSE IncDec � -2; FI; ELSE (* OperandSize = 32 *) set ZF based on [source-index] - [destination-index]; (* dword comparison *) IF DF = 0 THEN IncDec � 4 ELSE IncDec � -4; FI; FI; FI; source-index = source-index + IncDec; destination-index = destination-index + IncDec; Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| |* | | |* |* |* |* |* | \-----------------------/ The OF, SF, ZF, AF, PF, and CF flags are set according to the result. Protected Mode Exceptions #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF( fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions CMPXCHG-Compare and Exchange
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F B0 /r |CMPXCHG r/m8,r8 | | | | |X|X|Compare AL with r/m byte. If | | | | | | | | | |equal, set ZF and load byte reg | | | | | | | | | |into r/m byte. Else, clear ZF and| | | | | | | | | |load r/m byte into AL | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F B1 /r |CMPXCHG r/m16,r16 | | | | |X|X|Compare AX with r/m word. If | | | | | | | | | |equal, set ZF and load word reg | | | | | | | | | |into r/m word. Else, clear ZF and| | | | | | | | | |load r/m word into AX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F B1 /r |CMPXCHG r/m32,r32 | | | | |X|X|Compare EAX with r/m dword. If | | | | | | | | | |equal, set ZF and load dword reg | | | | | | | | | |into r/m dword. Else, clear ZF | | | | | | | | | |and load r/m dword into EAX. | \------------------------------------------------------------------------------/
The CMPXCHG instruction compares the accumulator (AL, AX, or EAX register) with DEST. If they are equal, SRC is loaded into DEST. Otherwise, DEST is loaded into the accumulator.
Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F B0 /r |CMPXCHG r/m8,r8 | | | | |X|X|Compare AL with r/m byte. If | | | | | | | | | |equal, set ZF and load byte reg | | | | | | | | | |into r/m byte. Else, clear ZF and| | | | | | | | | |load r/m byte into AL | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F B1 /r |CMPXCHG r/m16,r16 | | | | |X|X|Compare AX with r/m word. If | | | | | | | | | |equal, set ZF and load word reg | | | | | | | | | |into r/m word. Else, clear ZF and| | | | | | | | | |load r/m word into AX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F B1 /r |CMPXCHG r/m32,r32 | | | | |X|X|Compare EAX with r/m dword. If | | | | | | | | | |equal, set ZF and load dword reg | | | | | | | | | |into r/m dword. Else, clear ZF | | | | | | | | | |and load r/m dword into EAX. | \------------------------------------------------------------------------------/ Description The CMPXCHG instruction compares the accumulator (AL, AX, or EAX register) with DEST. If they are equal, SRC is loaded into DEST. Otherwise, DEST is loaded into the accumulator. Operation IF accumulator=DEST ZF � 1 DEST � SRC ELSE ZF � 0 accumulator � DEST Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| |* | | |* |* |* |* |* | \-----------------------/ The CF, PF, AF, SF, and OF flags are affected as if a CMP instruction had been run with DEST and the accumulator as operands. The ZF flag is set if the destination operand and the accumulator are equal; otherwise it is cleared. Protected Mode Exceptions #GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS (0) for an illegal address in the SS segment; #PF (fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in real-address mode; #PF (fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Notes This instruction can be used with a LOCK prefix. In order to simplify interface to the processor's bus, the destination operand receives a write cycle without regard to the result of the comparison. DEST is written back if the comparison fails, and SRC is written into the destination otherwise. (The processor never produces a locked read without also producing a locked write.) This instruction is not supported on Intel386 processors. Related Information Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions CMPXCHG8B-Compare and Exchange 8 Bytes
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F C7 /1 |CMPXCHG8B r/m64 | | | | | |X|Compare EDX:EAX with r/m qword. | | | | | | | | | |If equal, set ZF and load ECX:EBX | | | | | | | | | |into r/m qword. Else, clear ZF | | | | | | | | | |and load r/m qword into EDX:EAX | \------------------------------------------------------------------------------/
The CMPXCHG8B instruction compares the 64-bit value in EDX:EAX with DEST. EDX contains the high-order 32 bits, and EAX contains the low-order 32 bits of 64-bit value. If they are equal, the 64-bit value in ECX:EBX is stored into DEST. ECX contains the high-order 32 bits and EBX contains the low- order 32 bits. Otherwise, DEST is loaded into EDX:EAX.
Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F C7 /1 |CMPXCHG8B r/m64 | | | | | |X|Compare EDX:EAX with r/m qword. | | | | | | | | | |If equal, set ZF and load ECX:EBX | | | | | | | | | |into r/m qword. Else, clear ZF | | | | | | | | | |and load r/m qword into EDX:EAX | \------------------------------------------------------------------------------/ Description The CMPXCHG8B instruction compares the 64-bit value in EDX:EAX with DEST. EDX contains the high-order 32 bits, and EAX contains the low-order 32 bits of 64-bit value. If they are equal, the 64-bit value in ECX:EBX is stored into DEST. ECX contains the high-order 32 bits and EBX contains the low- order 32 bits. Otherwise, DEST is loaded into EDX:EAX. Operation IF EDX:EAX=DEST ZF � 1 DEST � ECX:EBX ELSE ZF � 0 EDX:EAX � DEST Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| | | | | |* | | | | \-----------------------/ The ZF flag is set if the destination operand and EDX:EAX are equal; otherwise it is cleared. The CF, PF, AF, SF, and OF flags are unaffected. Protected Mode Exceptions #GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS (0) for an illegal address in the SS segment; #PF (fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. The destination operand must be a memory operand, not a register. If the CMPXCHG8B instruction is run with a modr/m byte representing a register as the destination operand, #UD occurs. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in real-address mode; #PF (fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. #UD if modr/m byte represents a register as the destination. Notes This instruction can be used with a LOCK prefix. In order to simplify interface to the processor's bus, the destination operand receives a write cycle without regard to the result of the comparison. DEST is written back if the comparison fails, and SRC is written into the destination otherwise. (The processor never produces a locked read without also producing a locked write.) The "r/m64" syntax had previously been used only in the context of floating point operations. It indicates a 64-bit value, in memory at an address determined by the modr/m byte. This instruction is not supported on Intel486 processors. Related Information Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions CPUID-CPU Identification
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F A2 |CPUID | | | | | |X|EAX � CPU identification | | | | | | | | | |information | \------------------------------------------------------------------------------/
The CPUID instruction provides information to software about the vendor, family, model, and stepping of microprocessor on which it is running. An input value loaded into the EAX register for this instruction indicates what information should be returned by the CPUID instruction. Following processing of the CPUID instruction with a zero in EAX, the EAX register contains the highest input value understood by the CPUID instruction. For the Pentium processor, the value in EAX will be a one. Also included in the output of this instruction with an input value of zero in EAX is a vendor identification string contained in the EBX, EDX, and ECX registers. EBX contains the first four characters, EDX contains the next four characters and ECX contains the last four characters. For Intel processors, the vendor identification string is "GenuineIntel" as follows: EBX � 756e6547h (* "Genu", with G in the low nibble of BL *) EDX � 49656e69h (* "ineI", with i in the low nibble of DL *) ECX � 6c65746eh (* "ntel", with n in the low nibble of CL *) Following processing of the CPUID instruction with an input value of one loaded into the EAX register, EAX[3:0] contains the stepping id of the microprocessor, EAX[7:4] contains the model (the first model will be indicated by 0001B in these bits) and EAX[11:8] contains the family (5 for the Pentium processor family). EAX[31:12] are reserved, as well as EBX, and ECX. The Pentium processor sets the feature register, EDX, to 1BFH indicating which features the Pentium processor supports. A feature flag set to one indicates that the corresponding feature is supported. The feature set register is defined as follows: EDX[0:0] FPU on chip EDX[6:1] Refer to the Intel documentation EDX[7:7] Machine Check Exception EDX[8:8] CMPXCHG8B Instruction EDX[31:9] Reserved Software should determine the vendor identification in order to properly interpret the feature register flag bits. For more information on the feature set register, see the Intel documentation.
Description Flags Affected Operation Protected Mode Exceptions Protected Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F A2 |CPUID | | | | | |X|EAX � CPU identification | | | | | | | | | |information | \------------------------------------------------------------------------------/ Description The CPUID instruction provides information to software about the vendor, family, model, and stepping of microprocessor on which it is running. An input value loaded into the EAX register for this instruction indicates what information should be returned by the CPUID instruction. Following processing of the CPUID instruction with a zero in EAX, the EAX register contains the highest input value understood by the CPUID instruction. For the Pentium processor, the value in EAX will be a one. Also included in the output of this instruction with an input value of zero in EAX is a vendor identification string contained in the EBX, EDX, and ECX registers. EBX contains the first four characters, EDX contains the next four characters and ECX contains the last four characters. For Intel processors, the vendor identification string is "GenuineIntel" as follows: EBX � 756e6547h (* "Genu", with G in the low nibble of BL *) EDX � 49656e69h (* "ineI", with i in the low nibble of DL *) ECX � 6c65746eh (* "ntel", with n in the low nibble of CL *) Following processing of the CPUID instruction with an input value of one loaded into the EAX register, EAX[3:0] contains the stepping id of the microprocessor, EAX[7:4] contains the model (the first model will be indicated by 0001B in these bits) and EAX[11:8] contains the family (5 for the Pentium processor family). EAX[31:12] are reserved, as well as EBX, and ECX. The Pentium processor sets the feature register, EDX, to 1BFH indicating which features the Pentium processor supports. A feature flag set to one indicates that the corresponding feature is supported. The feature set register is defined as follows: EDX[0:0] FPU on chip EDX[6:1] Refer to the Intel documentation EDX[7:7] Machine Check Exception EDX[8:8] CMPXCHG8B Instruction EDX[31:9] Reserved Software should determine the vendor identification in order to properly interpret the feature register flag bits. For more information on the feature set register, see the Intel documentation. Operation switch (EAX) case 0: EAX � hv;(* hv=1 for the Pentium processor *) (* hv is the highest input value that is understood by CPUID. *) EBX � Vendor identification string; EDX � Vendor identification string; ECX � Vendor identification string; break; case 1: EAX[3:0] � Stepping ID; EAX[7:4] � Model; EAX[11:8] � Family; EAX[31:12] � Reserved; EBX � reserved; (* 0 *) ECX � reserved; (* 0 *) EBX � feature flags; break; default: (* EAX > hv *) EAX � reserved, undefined; EBX � reserved, undefined; ECX � reserved, undefined; EDX � reserved, undefined; break; end-of-switch Related Information Description Flags Affected Operation Protected Mode Exceptions Protected Mode Exceptions Virtual 8086 Mode Exceptions CWD/CDQ-Convert Word to Double/Convert Double to Quad
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |99 |CWD |X|X|X|X|X|X|DX � sign-extend of AX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |99 |CDQ | | | |X|X|X|EDX � sign-extend of EAX | \------------------------------------------------------------------------------/
CWD and CDQ double the size of the source operand. The CWD instruction copies the sign (bit 15) of the word in the AX register into every bit position in the DX register. The CDQ instruction copies the sing (bit 31) of the doubleword in the EAX register into every bit position in the EDX register. The CWD instruction can be used to produce a doubleword dividend from a word before a word division, and the CDQ instruction can be used to produce a quadword dividend from a doubleword before doubleword division. The CWD and CDQ instructions are different mnemonics for the same opcode. Which one gets run is determined by whether it is in a 16- or 32-bit segment and the presence of any operand-size override prefixes.
Description Flags Affected Operation Protected Mode Exceptions Protected Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |99 |CWD |X|X|X|X|X|X|DX � sign-extend of AX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |99 |CDQ | | | |X|X|X|EDX � sign-extend of EAX | \------------------------------------------------------------------------------/ Description CWD and CDQ double the size of the source operand. The CWD instruction copies the sign (bit 15) of the word in the AX register into every bit position in the DX register. The CDQ instruction copies the sing (bit 31) of the doubleword in the EAX register into every bit position in the EDX register. The CWD instruction can be used to produce a doubleword dividend from a word before a word division, and the CDQ instruction can be used to produce a quadword dividend from a doubleword before doubleword division. The CWD and CDQ instructions are different mnemonics for the same opcode. Which one gets run is determined by whether it is in a 16- or 32-bit segment and the presence of any operand-size override prefixes. Operation IF OperandSize = 16 (* instruction = CWD *) THEN DX � SignExtend(AX); ELSE (* OperandSize = 32, instruction = CDQ *) EDX �SignExtend(EAX); FI; Related Information Description Flags Affected Operation Protected Mode Exceptions Protected Mode Exceptions Virtual 8086 Mode Exceptions CWDE-Convert Word to Doubleword See entry for CBW/CWDE-Convert Byte to Word/Convert Word to Doubleword. DAA-Decimal Adjust AL after Addition
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |27 |DAA |X|X|X|X|X|X|Decimal adjust AL after addition | \------------------------------------------------------------------------------/
Run the DAA instruction only after running an ADD instruction that leaves a two-BCD-digit byte result in the AL register. The ADD operands should consist of two packaged BCD digits. The DAA instruction adjusts the AL register to contain the correct two-digit packed decimal result.
Description Flags Affected Operation Protected Mode Exceptions Protected Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |27 |DAA |X|X|X|X|X|X|Decimal adjust AL after addition | \------------------------------------------------------------------------------/ Description Run the DAA instruction only after running an ADD instruction that leaves a two-BCD-digit byte result in the AL register. The ADD operands should consist of two packaged BCD digits. The DAA instruction adjusts the AL register to contain the correct two-digit packed decimal result. Operation IF (((AL AND 0FH) > 09H) or EFLAGS.AF = 1) THEN AL � AL + 06H; FI; IF (((AL AND 0F0H) > 90H) or EFLAGS.CF = 1) THEN AL � AL + 60H; CF � 1; FI; Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| |? | | |* |* |* |* |* | \-----------------------/ The AF and CF flags are set if there is a decimal carry, cleared if there is no decimal carry; the SF, ZF and PF flags are set according to the result. The OF flag is undefined. Related Information Description Flags Affected Operation Protected Mode Exceptions Protected Mode Exceptions Virtual 8086 Mode Exceptions DAS-Decimal Adjust AL after Subtraction
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |2F |DAS |X|X|X|X|X|X|Decimal adjust AL after | | | | | | | | | |subtraction | \------------------------------------------------------------------------------/
Run the DAS instruction only after a subtraction instruction that leaves a two-BCD-digit byte result in the AL register. The operands should consist of two packed BCD digits. The DAS instruction adjusts the AL register to contain the correct packed two-digit decimal result.
Description Flags Affected Operation Protected Mode Exceptions Protected Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |2F |DAS |X|X|X|X|X|X|Decimal adjust AL after | | | | | | | | | |subtraction | \------------------------------------------------------------------------------/ Description Run the DAS instruction only after a subtraction instruction that leaves a two-BCD-digit byte result in the AL register. The operands should consist of two packed BCD digits. The DAS instruction adjusts the AL register to contain the correct packed two-digit decimal result. Operation tmpCF � 0; tmpAL � AL; IF (((tmpAL AND 0FH) > 9H) or AF = 1) THEN AF � 1; AL � AL - 6H; tmpCF � (AL < 0) OR CF; FI; IF ((tmpAL > 99H) or CF = 1) THEN AL � AL - 60H; tmpCF � 1; FI; CF � tmpCF; Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| |? | | |* |* |* |* |* | \-----------------------/ The AF and CF flags are set if there is a decimal borrow, cleared if there is no decimal borrow; the SF, ZF and PF flags are set according to the result. The OF flag is undefined. Related Information Description Flags Affected Operation Protected Mode Exceptions Protected Mode Exceptions Virtual 8086 Mode Exceptions DEC-Decrement by 1
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FE /1 |DEC r/m8 |X|X|X|X|X|X|Decrement r/m byte by 1 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /1 |DEC r/m16 |X|X|X|X|X|X|Decrement r/m word by 1 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /1 |DEC r/m32 | | | |X|X|X|Decrement r/m dword by 1 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |48+rw |DEC r16 |X|X|X|X|X|X|Decrement word register by 1 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |48+rd |DEC r32 | | | |X|X|X|Decrement dword register by 1 | \------------------------------------------------------------------------------/
The DEC instruction subtracts 1 from the operand. The DEC instruction does not change the CF flag. To affect the CF flag, use the SUB instruction with an immediate operand of 1.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FE /1 |DEC r/m8 |X|X|X|X|X|X|Decrement r/m byte by 1 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /1 |DEC r/m16 |X|X|X|X|X|X|Decrement r/m word by 1 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /1 |DEC r/m32 | | | |X|X|X|Decrement r/m dword by 1 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |48+rw |DEC r16 |X|X|X|X|X|X|Decrement word register by 1 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |48+rd |DEC r32 | | | |X|X|X|Decrement dword register by 1 | \------------------------------------------------------------------------------/ Description The DEC instruction subtracts 1 from the operand. The DEC instruction does not change the CF flag. To affect the CF flag, use the SUB instruction with an immediate operand of 1. Operation DEST � DEST - 1; Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| |* | | |* |* |* |* | | \-----------------------/ The OF, SF, ZF, AF, and PF flags are set according to the result. Protected Mode Exceptions #GP(0) if the result is a nonwritable segment; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions DIV-Unsigned Divide
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F6 /6 |DIV r/m8 |X|X|X|X|X|X|Unsigned divide AX by r/m byte | | | | | | | | | |(AL=Quotient, AH=Remainder) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F7 /6 |DIV r/m16 |X|X|X|X|X|X|Unsigned divide DX:AX by r/m word | | | | | | | | | |(AX=Quotient, DX=Remainder) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F7 /6 |DIV r/m32 | | | |X|X|X|Unsigned divide EDX:EAX by r/m | | | | | | | | | |dword (EAX=Quotient, | | | | | | | | | |EDX=Remainder) | \------------------------------------------------------------------------------/
The DIV instruction performs an unsigned division. The dividend is implicit ; only the divisor is given as an operand. The remainder is always less than the divisor. The type of the divisor determines which registers to use as follows: /------------------------------------------------------\ | SIZE | DIVIDEND | DIVISOR | QUOTIENT | REMAINDER | |---------+-----------+---------+----------+-----------| | byte | AX | r/m8 | AL | AH | |---------+-----------+---------+----------+-----------| | word | DX:AX | r/m16 | AX | DX | |---------+-----------+---------+----------+-----------| | dword | EDX:EAX | r/m32 | EAX | EDX | \------------------------------------------------------/
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F6 /6 |DIV r/m8 |X|X|X|X|X|X|Unsigned divide AX by r/m byte | | | | | | | | | |(AL=Quotient, AH=Remainder) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F7 /6 |DIV r/m16 |X|X|X|X|X|X|Unsigned divide DX:AX by r/m word | | | | | | | | | |(AX=Quotient, DX=Remainder) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F7 /6 |DIV r/m32 | | | |X|X|X|Unsigned divide EDX:EAX by r/m | | | | | | | | | |dword (EAX=Quotient, | | | | | | | | | |EDX=Remainder) | \------------------------------------------------------------------------------/ Description The DIV instruction performs an unsigned division. The dividend is implicit ; only the divisor is given as an operand. The remainder is always less than the divisor. The type of the divisor determines which registers to use as follows: /------------------------------------------------------\ | SIZE | DIVIDEND | DIVISOR | QUOTIENT | REMAINDER | |---------+-----------+---------+----------+-----------| | byte | AX | r/m8 | AL | AH | |---------+-----------+---------+----------+-----------| | word | DX:AX | r/m16 | AX | DX | |---------+-----------+---------+----------+-----------| | dword | EDX:EAX | r/m32 | EAX | EDX | \------------------------------------------------------/ Operation temp � dividend / divisor; IF temp does not fit in quotient THEN Interrupt 0; ELSE quotient � temp; remainder � dividend MOD (r/m); FI; Note: Divisions are unsigned. The divisor is given by the r/m operand. The dividend, quotient, and remainder use implicit registers. Refer to the table under "Description". Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| |? | | |? |? |? |? |? | \-----------------------/ The OF, SF, ZF, AF, PF, and CF flags are undefined. Protected Mode Exceptions Interrupt 0 if the quotient is too large to fit in the designated register (AL, AX, or EAX), or if the divisor is 0; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 0 if the quotient is too big to fit in the designated register ( AL, AX, or EAX), or if the divisor is 0; Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions ENTER-Make Stack Frame for Procedure Parameters
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C8 iw 00 |ENTER imm16,0 | |X|X|X|X|X|Make procedure stack frame | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C8 iw 01 |ENTER imm16,1 | |X|X|X|X|X|Make stack frame for procedure | | | | | | | | | |parameters | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C8 iw ib |ENTER imm16,imm8 | |X|X|X|X|X|Make stack frame for procedure | | | | | | | | | |parameters | \------------------------------------------------------------------------------/
The ENTER instruction creates the stack frame required by most block- structured high-level languages. The first operand specifies the number of bytes of dynamic storage allocated on the stack for the routine being entered. The second operand gives the lexical nesting level (0 to 31) of the routine within the high-level language source code. It determines the number of stack frame pointers copied into the new stack frame from the preceding frame. Both the operand-size attribute and the stack-size attribute are used to determine whether BP or EBP is used for the current frame pointer and SP or ESP is used for the stack pointer. If the operand-size attribute is 16-bits, the processor uses the BP register as the frame pointer and the SP register as the stack pointer, unless the stack-size attribute is 32-bits in which case it uses EBP for the frame pointer and ESP for the stack pointer. If the operand-size attribute is 32-bits, the processor uses the EBP register for the frame pointer and the ESP register for the stack pointer, unless the stack-size attribute is 16-bits in which case it uses BP for the frame pointer and SP for the stack pointer. If the second operand is 0, the ENTER instruction pushes the frame pointer (BP or EBP register) onto the stack; the ENTER instruction then subtracts the first operand from the stack pointer and sets the frame pointer to the current stack-pointer value. For example, a procedure with 12 bytes of local variables would have an ENTER 12,0 instruction at its entry point and a LEAVE instruction before every RET instruction. The 12 local bytes would be addressed as negative offsets from the frame pointer.
Description Flags Affected Operation Protected Mode Exceptions Protected Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C8 iw 00 |ENTER imm16,0 | |X|X|X|X|X|Make procedure stack frame | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C8 iw 01 |ENTER imm16,1 | |X|X|X|X|X|Make stack frame for procedure | | | | | | | | | |parameters | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C8 iw ib |ENTER imm16,imm8 | |X|X|X|X|X|Make stack frame for procedure | | | | | | | | | |parameters | \------------------------------------------------------------------------------/ Description The ENTER instruction creates the stack frame required by most block- structured high-level languages. The first operand specifies the number of bytes of dynamic storage allocated on the stack for the routine being entered. The second operand gives the lexical nesting level (0 to 31) of the routine within the high-level language source code. It determines the number of stack frame pointers copied into the new stack frame from the preceding frame. Both the operand-size attribute and the stack-size attribute are used to determine whether BP or EBP is used for the current frame pointer and SP or ESP is used for the stack pointer. If the operand-size attribute is 16-bits, the processor uses the BP register as the frame pointer and the SP register as the stack pointer, unless the stack-size attribute is 32-bits in which case it uses EBP for the frame pointer and ESP for the stack pointer. If the operand-size attribute is 32-bits, the processor uses the EBP register for the frame pointer and the ESP register for the stack pointer, unless the stack-size attribute is 16-bits in which case it uses BP for the frame pointer and SP for the stack pointer. If the second operand is 0, the ENTER instruction pushes the frame pointer (BP or EBP register) onto the stack; the ENTER instruction then subtracts the first operand from the stack pointer and sets the frame pointer to the current stack-pointer value. For example, a procedure with 12 bytes of local variables would have an ENTER 12,0 instruction at its entry point and a LEAVE instruction before every RET instruction. The 12 local bytes would be addressed as negative offsets from the frame pointer. Operation level � level MOD 32 2ndOperand <- 2ndOperand MOD 32 IF operand_size = 16 THEN Push(bp) ELSE Push(ebp) FI; IF stkSize = 16 THEN framePtr = sp ELSE framePtr = esp FI; FOR i � 1 TO (2ndOperand - 1) DO IF oprand_size = 16 THEN IF stkSize = 16 THEN bp = bp - 2 Push([bp]) (* word push *) ELSE (* stkSize = 32 *) ebp = ebp - 2 Push([ebp]) (* word push *) FI; ELSE (* operand_size = 32 *) IF stkSize = 16 bp = bp - 4 Push([bp]) (* doubleword push *) ELSE (* stkSize = 32 *) ebp = ebp - 4 Push([ebp]) (* doubleword push *) FI; FI; OD; IF stkSize = 16 THEN Push(framePtr); (* word push *) ELSE Pushd(framePtr); (* doubleword push *) FI; IF stkSize = 16 THEN bp = framePtr sp = sp - 1stOperand ELSE ebp = framePtr esp = esp - 1stOperand FI; Protected Mode Exceptions #SS(0) if the SP or ESP value would exceed the stack limit at any point during instruction processing; #PF(fault-code) for a page fault. Related Information Description Flags Affected Operation Protected Mode Exceptions Protected Mode Exceptions Virtual 8086 Mode Exceptions F2XM1-Compute (2 to the power of X) minus 1
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 F0 |F2XM1 |X|X|X|X|X|X|Replace ST with (2ST - 1) | \------------------------------------------------------------------------------/
F2XM1 replaces the contents of ST with (2ST-1). ST must lie in the range -1 < ST < 1.
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 F0 |F2XM1 |X|X|X|X|X|X|Replace ST with (2ST - 1) | \------------------------------------------------------------------------------/ Description F2XM1 replaces the contents of ST with (2ST-1). ST must lie in the range -1 < ST < 1. Operation ST � (2ST-1); Numeric Exceptions P, U, D, I, IS. Protected Mode Exceptions #NM if either EM or TS in CR0 is set. Real Address Mode Exceptions Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions #NM if either EM or TS in CR0 is set. Notes If the operand is outside the acceptable range, the result of F2XM1 is undefined. Values other than 2 can be exponentiated using the formula xy = 2(y * log2x) The instructions FLDL2T and FLDL2E load the constants log210 and log2e, respectively. FYL2X can be used to calculate y * log2x for arbitrary positive x. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FABS-Absolute Value
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 E1 |FABS |X|X|X|X|X|X|Replace ST with its absolute value| \------------------------------------------------------------------------------/
The absolute value instruction clears the sign bit of ST. This operation leaves a positive value unchanged, or replaces a negative value with a positive value of equal magnitude.
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 E1 |FABS |X|X|X|X|X|X|Replace ST with its absolute value| \------------------------------------------------------------------------------/ Description The absolute value instruction clears the sign bit of ST. This operation leaves a positive value unchanged, or replaces a negative value with a positive value of equal magnitude. Operation sign bit of ST � 0 Numeric Exceptions IS Protected Mode Exceptions #NM if either EM or TS in CR0 is set. Real Address Mode Exceptions Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions #NM if either EM or TS in CR0 is set. Notes The invalid-operation exception is raised only on stack underflow. No exception is raised if the operand is a signalling NaN or is in an unsupported format. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FADD/FADDP/FIADD-Add
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DE C1 |FADD |X|X|X|X|X|X|Add ST to ST(1) and pop ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D8 C0+i |FADD ST,ST(i) |X|X|X|X|X|X|Add ST(i) to ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DC C0+i |FADD ST(i),ST |X|X|X|X|X|X|Add ST to ST(i) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D8 /0 |FADD m32real |X|X|X|X|X|X|Add m32real to ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DC /0 |FADD m64real |X|X|X|X|X|X|Add m64real to ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DE C0+i |FADDP ST(i),ST |X|X|X|X|X|X|Add ST to ST(i) and pop ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DE /0 |FIADD m16int |X|X|X|X|X|X|Add m16int to ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DA /0 |FIADD m32int |X|X|X|X|X|X|Add m32int to ST | \------------------------------------------------------------------------------/
The addition instructions add the source and destination operands and return the sum to the destination. The operand at the stack top can be doubled by coding: FADD ST, ST(0)
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DE C1 |FADD |X|X|X|X|X|X|Add ST to ST(1) and pop ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D8 C0+i |FADD ST,ST(i) |X|X|X|X|X|X|Add ST(i) to ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DC C0+i |FADD ST(i),ST |X|X|X|X|X|X|Add ST to ST(i) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D8 /0 |FADD m32real |X|X|X|X|X|X|Add m32real to ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DC /0 |FADD m64real |X|X|X|X|X|X|Add m64real to ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DE C0+i |FADDP ST(i),ST |X|X|X|X|X|X|Add ST to ST(i) and pop ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DE /0 |FIADD m16int |X|X|X|X|X|X|Add m16int to ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DA /0 |FIADD m32int |X|X|X|X|X|X|Add m32int to ST | \------------------------------------------------------------------------------/ Description The addition instructions add the source and destination operands and return the sum to the destination. The operand at the stack top can be doubled by coding: FADD ST, ST(0) Operation DEST � DEST +SRC; If instruction = FADDP THEN pop ST FI; Numeric Exceptions P, U, O, D, I, IS. Protected Mode Exceptions #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF ( fault-code) for a page fault; #NM if either EM or TS in CR0 is set; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to 0FFFFH; Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF (fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Notes If the source operand is in memory, it is automatically converted to the extended-real format. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FBLD-Load Binary Coded Decimal
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DF /4 |FBLD m80bcd |X|X|X|X|X|X|Push m80bcd onto the FPU stack | \------------------------------------------------------------------------------/
FBLD converts the BCD source operand into extended-real format, and pushes it onto the FPU stack. See Figure 6-10 for BCD data layout.
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DF /4 |FBLD m80bcd |X|X|X|X|X|X|Push m80bcd onto the FPU stack | \------------------------------------------------------------------------------/ Description FBLD converts the BCD source operand into extended-real format, and pushes it onto the FPU stack. See Figure 6-10 for BCD data layout. Operation Decrement FPU stack-top pointer; ST(0) � SRC; Numeric Exceptions IS. Protected Mode Exceptions #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF ( fault-code) for a page fault; #NM if either EM or TS in CR0 is set; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to 0FFFFH; Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF (fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Notes The source is loaded without rounding error. The sign of the source is preserved, including the case where the value is negative zero. The packed decimal digits are assumed to be in the range 0-9. The instruction does not check for invalid digits (A-FH), and the result of attempting to load an invalid encoding is undefined. ST(7) must be empty to avoid causing an invalid-operation exception. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FBSTP-Store Binary Coded Decimal and Pop
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DF /6 |FBSTP m80bcd |X|X|X|X|X|X|Store ST in m80bcd and pop ST | \------------------------------------------------------------------------------/
FBSTP converts the value in ST into a packed decimal integer, stores the result at the destination in memory, and pops ST. Non-integral values are first rounded according to the RC field of the control word. See Figure 6- 10 for BCD data layout.
Description FPU Flags Affected Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DF /6 |FBSTP m80bcd |X|X|X|X|X|X|Store ST in m80bcd and pop ST | \------------------------------------------------------------------------------/ Description FBSTP converts the value in ST into a packed decimal integer, stores the result at the destination in memory, and pops ST. Non-integral values are first rounded according to the RC field of the control word. See Figure 6- 10 for BCD data layout. Operation DEST � ST(0); pop ST; Numeric Exceptions P, I, IS. Protected Mode Exceptions #GP(0) if the destination is in a nonwritable segment; #GP(0) for an illegal memory operand effective address in the CS, DS, ES FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page fault; #NM if either EM or TS in CR0 is set; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to 0FFFFH; Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF (fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Related Information Description FPU Flags Affected Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FCHS-Change Sign
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 E0 |FCHS |X|X|X|X|X|X|Replace ST with a value of | | | | | | | | | |opposite sign | \------------------------------------------------------------------------------/
The change sign instruction inverts the sign bit of ST. This operation replaces a positive value with a negative value of equal magnitude, or vice -versa.
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 E0 |FCHS |X|X|X|X|X|X|Replace ST with a value of | | | | | | | | | |opposite sign | \------------------------------------------------------------------------------/ Description The change sign instruction inverts the sign bit of ST. This operation replaces a positive value with a negative value of equal magnitude, or vice -versa. Operation sign bit of ST � NOT (sign bit of ST) Numeric Exceptions IS Protected Mode Exceptions #NM if either EM or TS in CR0 is set. Real Address Mode Exceptions Interrupt 7 if either EM or TS in CRO is set. Virtual 8086 Mode Exceptions #NM if either EM or TS in CR0 is set. Notes The invalid-operation exception is raised only on stack underflow, even if the operand is signalling NaN or is an unsupported format. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FCLEX/FNCLEX-Clear Exceptions
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9B DB E2 |FCLEX |X|X|X|X|X|X|Clear FP exception flags after | | | | | | | | | |checking for FP error conditions | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DB E2 |FNCLEX |X|X|X|X|X|X|Clear FP exeption flags without | | | | | | | | | |checking for FP error conditions | \------------------------------------------------------------------------------/
FCLEX clears the exception flags, the exception status flag, and the busy flag of the FPU status word.
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9B DB E2 |FCLEX |X|X|X|X|X|X|Clear FP exception flags after | | | | | | | | | |checking for FP error conditions | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DB E2 |FNCLEX |X|X|X|X|X|X|Clear FP exeption flags without | | | | | | | | | |checking for FP error conditions | \------------------------------------------------------------------------------/ Description FCLEX clears the exception flags, the exception status flag, and the busy flag of the FPU status word. Operation SW[0..7] �0; SW[15] � 0; Numeric Exceptions None Protected Mode Exceptions #NM if either EM or TS in CR0 is set. Real Address Mode Exceptions Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions #NM if either EM or TS in CR0 is set. Notes FCLEX checks for unmasked floating-point error conditions before clearing the exception flags, FNCLEX does not. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FCOM/FCOMP/FCOMPP-Compare Real
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D8 D1 |FCOM |X|X|X|X|X|X|Compare ST with ST(1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D8 D0+i |FCOM ST(i) |X|X|X|X|X|X|Compare ST with ST(i) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D8 /2 |FCOM m32real |X|X|X|X|X|X|Compare ST with m32real | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DC /2 |FCOM m64real |X|X|X|X|X|X|Compare ST with m64real | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D8 D9 |FCOMP |X|X|X|X|X|X|Compare ST with ST(1) and pop ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D8 D8+i |FCOMP ST(i) |X|X|X|X|X|X|Compare ST with ST(i) and pop ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D8 /3 |FCOMP m32real |X|X|X|X|X|X|Compare ST with m32real and pop ST| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DC /3 |FCOMP m64real |X|X|X|X|X|X|Compare ST with m64real and pop ST| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DE D9 |FCOMPP |X|X|X|X|X|X|Compare ST with ST(1) and pop ST | | | | | | | | | |twice | \------------------------------------------------------------------------------/
The compare real instructions compare the stack top to the source, which can be a register or a single- or double-real memory operand. If no operand is encoded, ST is compared to ST(1). Following the instruction, the condition codes reflect the relation between ST and the source operand.
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D8 D1 |FCOM |X|X|X|X|X|X|Compare ST with ST(1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D8 D0+i |FCOM ST(i) |X|X|X|X|X|X|Compare ST with ST(i) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D8 /2 |FCOM m32real |X|X|X|X|X|X|Compare ST with m32real | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DC /2 |FCOM m64real |X|X|X|X|X|X|Compare ST with m64real | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D8 D9 |FCOMP |X|X|X|X|X|X|Compare ST with ST(1) and pop ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D8 D8+i |FCOMP ST(i) |X|X|X|X|X|X|Compare ST with ST(i) and pop ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D8 /3 |FCOMP m32real |X|X|X|X|X|X|Compare ST with m32real and pop ST| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DC /3 |FCOMP m64real |X|X|X|X|X|X|Compare ST with m64real and pop ST| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DE D9 |FCOMPP |X|X|X|X|X|X|Compare ST with ST(1) and pop ST | | | | | | | | | |twice | \------------------------------------------------------------------------------/ Description The compare real instructions compare the stack top to the source, which can be a register or a single- or double-real memory operand. If no operand is encoded, ST is compared to ST(1). Following the instruction, the condition codes reflect the relation between ST and the source operand. Operation Case (relation of operands) OF Not comparable: C3, C2, C0 � 111; ST > SRC: C3, C2, C0 � 000; ST < SRC: C3, C2, C0 � 001; ST = SRC: C3, C2, C0 � 100; If instruction = FCOMP THEN pop ST; Fl; If instruction = FCOMPP THEN pop ST; pop ST; Fl; FPU Flags Affected /-------------------------\ |FPU FLAGS |EFLAGS | |------------+------------| |C0 |CF | |------------+------------| |C1 |None | |------------+------------| |C2 |PF | |------------+------------| |C3 |ZF | \-------------------------/ C1 as described in FPU Flags Affected; C0, C2, C3 as specified above. Numeric Exceptions D, I, IS. Protected Mode Exceptions #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF ( fault-code) for a page fault; #NM if either EM or TS in CR0 is set; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would like outside effective address space from 0 to 0FFFFH; Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF (fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Notes If either operand is NaN or is in an undefined format, or if a stack fault occurs, the invalid-operation exception is raised, and the condition bits are set to "unordered." The sign of zero is ignored, so that -0.0 =-+0.0. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FCOS-Cosine
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 FF |FCOS | | | |X|X|X|Replace ST with its cosine | \------------------------------------------------------------------------------/
The cosine instruction replaces the contents of ST with cos(ST). ST, expressed in radians, must lie in the range 101 < 2 63.
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 FF |FCOS | | | |X|X|X|Replace ST with its cosine | \------------------------------------------------------------------------------/ Description The cosine instruction replaces the contents of ST with cos(ST). ST, expressed in radians, must lie in the range 101 < 2 63. Operation IF operand is in range THEN C2 � 0; ST � cos(ST); ELSE C2 � 1; FI; FPU Flags Affected /-----------\ |C0|C1|C2|C3| |--+--+--+--| |? |* |? |* | \-----------/ C1, C2 as described in FPU Flags Affected; C0, C3 undefined. Numeric Exceptions P,D,I,IS. Protected Mode Exceptions #NM if either EM or TS in CR0 is set. Real Address Mode Exceptions Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions #NM if either EM or TS in CR0 is set. Notes If the operand is outside the acceptable range, the C2 flag is set, and ST remains unchanged. It is the programmer's responsibility to reduce the operand to an absolute value smaller than 263 by subtracting an appropriate integer multiple of 2ã. See the Intel documentation for discussion of the proper value to use for ã in performing such reductions. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FDECSTP-Decrement Stack-Top Pointer
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 F6 |FDECSTP |X|X|X|X|X|X|Decrement top-of-stack pointer for| | | | | | | | | |FPU register stack | \------------------------------------------------------------------------------/
FDESCSTP subtracts one (without carry) from the three-bit TOP field of the FPU status word.
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 F6 |FDECSTP |X|X|X|X|X|X|Decrement top-of-stack pointer for| | | | | | | | | |FPU register stack | \------------------------------------------------------------------------------/ Description FDESCSTP subtracts one (without carry) from the three-bit TOP field of the FPU status word. Operation IF TOP=0 THEN TOP � 7; ELSE TOP � TOP-1; FI; Numeric Exceptions None. Protected Mode Exceptions #NM if either EM or TS in CR0 is set. Real Address Mode Exceptions Interrupt 7 if either EM or TS in CR0 is set. Notes The effect of FDECSTP is to rotate the stack. It does not alter register tags or contents, nor does it transfer data. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions FDISI/FNDISI-Disable Interrupts
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9B DB E1 |FDISI |X|X| | | | |Sets the interrupt enable mask in | | | | | | | | | |the control word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DB E1 |FNDISI |X|X| | | | |Sets the interrupt enable mask in | | | | | | | | | |the control word | \------------------------------------------------------------------------------/
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9B DB E1 |FDISI |X|X| | | | |Sets the interrupt enable mask in | | | | | | | | | |the control word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DB E1 |FNDISI |X|X| | | | |Sets the interrupt enable mask in | | | | | | | | | |the control word | \------------------------------------------------------------------------------/ Description Operation FPU Flags Affected /-----------\ |C0|C1|C2|C3| |--+--+--+--| | | | | | \-----------/ Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Notes Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions FDIV/FDIVP/FIDIV-Divide
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D8 /6 |FDIV m32real |X|X|X|X|X|X|Replace ST with ST ö m32real | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DC /6 |FDIV m64real |X|X|X|X|X|X|Replace ST with ST ö m64real | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D8 F0+i |FDIV ST,ST(i) |X|X|X|X|X|X|Replace ST with ST ö ST(i) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DC F8+i |FDIV ST(i),ST |X|X|X|X|X|X|Replace ST(i) with ST(i) ö ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DE F8+i |FDIVP ST(i),ST |X|X|X|X|X|X|Replace ST(i) with ST(i) ö ST; pop| | | | | | | | | |ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DE F9 |FDIV |X|X|X|X|X|X|Replace ST(1) with ST(1) ö ST; pop| | | | | | | | | |ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DE /6 |FIDIV m16int |X|X|X|X|X|X|Replace ST with ST ö m16int | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DA /6 |FIDIV m32int |X|X|X|X|X|X|Replace ST with ST ö m32int | \------------------------------------------------------------------------------/
The division instructions divide the stack top by other operand and return the quotient to the destination.
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D8 /6 |FDIV m32real |X|X|X|X|X|X|Replace ST with ST ö m32real | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DC /6 |FDIV m64real |X|X|X|X|X|X|Replace ST with ST ö m64real | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D8 F0+i |FDIV ST,ST(i) |X|X|X|X|X|X|Replace ST with ST ö ST(i) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DC F8+i |FDIV ST(i),ST |X|X|X|X|X|X|Replace ST(i) with ST(i) ö ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DE F8+i |FDIVP ST(i),ST |X|X|X|X|X|X|Replace ST(i) with ST(i) ö ST; pop| | | | | | | | | |ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DE F9 |FDIV |X|X|X|X|X|X|Replace ST(1) with ST(1) ö ST; pop| | | | | | | | | |ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DE /6 |FIDIV m16int |X|X|X|X|X|X|Replace ST with ST ö m16int | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DA /6 |FIDIV m32int |X|X|X|X|X|X|Replace ST with ST ö m32int | \------------------------------------------------------------------------------/ Description The division instructions divide the stack top by other operand and return the quotient to the destination. Operation FDIV DEST, SRC DEST � DEST ö SRC If instruction = FDIVP THEN pop ST FI; Numeric Exceptions P, U, O, Z, D, I, IS. Protected Mode Exceptions #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF( fault-code) for a page fault; #NM if either EM or TS in CR0 is set; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to 0FFFFH; Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Notes If the source operand is in memory, it is automatically converted to the extended-real format. The performance of the division instructions depends on the PC (Precision Control) field of the FPU control word. If PC specifies a precision of 53 bits, the division instructions will run in 33 clocks. If the specified precision is 24 bits, the division instructions will take only 19 clocks. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FDIVR/FDIVRP/FIDIVR-Reverse Divide
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D8 /7 |FDIVR m32real |X|X|X|X|X|X|Replace ST with m32real ö ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DC /7 |FDIVR m64real |X|X|X|X|X|X|Replace ST with m64real ö ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D8 F8+i |FDIVR ST,ST(i) |X|X|X|X|X|X|Replace ST with ST(i) ö ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DC F0+i |FDIVR ST(i),ST |X|X|X|X|X|X|Replace ST(i) with ST ö ST(i) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DE F0+i |FDIVRP ST(i),ST |X|X|X|X|X|X|Replace ST(i) with ST ö ST(i); pop| | | | | | | | | |ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DE F1 |FDIVR |X|X|X|X|X|X|Replace ST(1) with ST ö ST(1); pop| | | | | | | | | |ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DE /7 |FIDIVR m16int |X|X|X|X|X|X|Replace ST with m16int ö ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DA /7 |FIDIVR m32int |X|X|X|X|X|X|Replace ST with m32int ö ST | \------------------------------------------------------------------------------/
The division instructions divide the other operand by the stack top and return the quotient to the destination.
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D8 /7 |FDIVR m32real |X|X|X|X|X|X|Replace ST with m32real ö ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DC /7 |FDIVR m64real |X|X|X|X|X|X|Replace ST with m64real ö ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D8 F8+i |FDIVR ST,ST(i) |X|X|X|X|X|X|Replace ST with ST(i) ö ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DC F0+i |FDIVR ST(i),ST |X|X|X|X|X|X|Replace ST(i) with ST ö ST(i) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DE F0+i |FDIVRP ST(i),ST |X|X|X|X|X|X|Replace ST(i) with ST ö ST(i); pop| | | | | | | | | |ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DE F1 |FDIVR |X|X|X|X|X|X|Replace ST(1) with ST ö ST(1); pop| | | | | | | | | |ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DE /7 |FIDIVR m16int |X|X|X|X|X|X|Replace ST with m16int ö ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DA /7 |FIDIVR m32int |X|X|X|X|X|X|Replace ST with m32int ö ST | \------------------------------------------------------------------------------/ Description The division instructions divide the other operand by the stack top and return the quotient to the destination. Operation FDIVR DEST, SRC DEST � SRC ö DEST IF instruction = FDIVRP THEN pop ST FI; Numeric Exceptions P, U, O, Z, D, I, IS. Protected Mode Exceptions #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF( fault-code) for a page fault; #NM if either EM or TS in CR0 is set; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to 0FFFFH; Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Notes If the source operand is in memory, it is automatically converted to the extended-real format. The performance of the division instructions depends on the PC (Precision Control) field of the FPU control word. If PC specifies a precision of 53 bits, the reverse division instructions will run in 33 clocks. If the specified precision is 24 bits, the reverse division instructions will take only 19 clocks. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FENI/FNENI-Enable Interrupts
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9B DB E0 |FENI |X|X| | | | |Clears the interrupt control mask | | | | | | | | | |in the control word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DB E0 |FNENI |X|X| | | | |Clears the interrupt enable mask | | | | | | | | | |in the control word | \------------------------------------------------------------------------------/
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9B DB E0 |FENI |X|X| | | | |Clears the interrupt control mask | | | | | | | | | |in the control word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DB E0 |FNENI |X|X| | | | |Clears the interrupt enable mask | | | | | | | | | |in the control word | \------------------------------------------------------------------------------/ Description Operation FPU Flags Affected /-----------\ |C0|C1|C2|C3| |--+--+--+--| | | | | | \-----------/ Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Notes Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions FFREE-Free Floating-Point Register
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DD C0+i |FFREE ST(i) |X|X|X|X|X|X|Tag ST(i) as empty | \------------------------------------------------------------------------------/
FFREE tags the destination register as empty.
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DD C0+i |FFREE ST(i) |X|X|X|X|X|X|Tag ST(i) as empty | \------------------------------------------------------------------------------/ Description FFREE tags the destination register as empty. Operation TAG(i) � 11B; Numeric Exceptions None Protected Mode Exceptions #NM if either EM or TS in CR0 is set. Real Address Mode Exceptions Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions #NM if either EM or TS in CR0 is set. Notes FFREE does not affect the contents of the destination register. The floating-point stack pointer (TOP) is also unaffected. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FICOM/FICOMP-Compare Integer
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DE /2 |FICOM m16int |X|X|X|X|X|X|Compare ST with m16int | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DA /2 |FICOM m32int |X|X|X|X|X|X|Compare ST with m32int | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DE /3 |FICOMP m16int |X|X|X|X|X|X|Compare ST with m16int and pop ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DA /3 |FICOMP m32int |X|X|X|X|X|X|Compare ST with m32int and pop ST | \------------------------------------------------------------------------------/
The compare integer instructions compare the stack top to the source. Following the instruction, the condition codes reflect the relation between ST and the source operand.
Description FPU Flags Affected Notes Operation Numeric Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DE /2 |FICOM m16int |X|X|X|X|X|X|Compare ST with m16int | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DA /2 |FICOM m32int |X|X|X|X|X|X|Compare ST with m32int | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DE /3 |FICOMP m16int |X|X|X|X|X|X|Compare ST with m16int and pop ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DA /3 |FICOMP m32int |X|X|X|X|X|X|Compare ST with m32int and pop ST | \------------------------------------------------------------------------------/ Description The compare integer instructions compare the stack top to the source. Following the instruction, the condition codes reflect the relation between ST and the source operand. Operation CASE (relation of operands) OF Not comparable: C3, C2, C0 � 111; ST > SRC: C3, C2, C0 � 000; ST < SRC: C3, C2, C0 � 001; ST = SRC: C3, C2, C0 � 100; If instruction = FICOMP THEN pop ST; FI; FPU Flags Affected /-------------------------\ |FPU FLAGS |EFLAGS | |------------+------------| |C0 |CF | |------------+------------| |C1 |(none) | |------------+------------| |C2 |PF | |------------+------------| |C3 |ZF | \-------------------------/ C1 as described in FPU Flags Affected; C0, C2, C3 as specified above. Numeric Exceptions D, I, IS. Protected Mode Exceptions #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF( fault-code) for a page fault; #NM if either EM or TS in CR0 is set; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to 0FFFFH; Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Notes The memory operand is converted to extended-real format before the comparison performed. If either operand is a NaN or is in an undefined format, of if a stack fault occurs, the invalid operation exception is raised, and the condition bits are set to "unordered." Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FILD-Load Integer
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DF /0 |FILD m16int |X|X|X|X|X|X|Push m16int onto the FPU stack | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DB /0 |FILD m32int |X|X|X|X|X|X|Push m32int onto the FPU stack | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DF /5 |FILD m64int |X|X|X|X|X|X|Push m64int onto the FPU stack | \------------------------------------------------------------------------------/
FILD converts the source signed integer operand into extended-real format, and pushes it onto the FPU stack.
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DF /0 |FILD m16int |X|X|X|X|X|X|Push m16int onto the FPU stack | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DB /0 |FILD m32int |X|X|X|X|X|X|Push m32int onto the FPU stack | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DF /5 |FILD m64int |X|X|X|X|X|X|Push m64int onto the FPU stack | \------------------------------------------------------------------------------/ Description FILD converts the source signed integer operand into extended-real format, and pushes it onto the FPU stack. Operation Decrement FPU stack-top pointer; ST(0) � SRC; Numeric Exceptions IS. Protected Mode Exceptions #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF( fault-code) for a page fault; #NM if either EM or TS in CR0 is set; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to 0FFFFH; Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Notes The source is loaded without rounding error. ST(7) must be empty to avoid causing an invalid-operation exception. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FINCSTP-Increment Stack-Top Pointer
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 F7 |FINCSTP |X|X|X|X|X|X|Increment top-of-stack pointer for| | | | | | | | | |FPU register stack | \------------------------------------------------------------------------------/
FINCSTP adds one (without carry) to the three-bit TOP field of the FPU status word.
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 F7 |FINCSTP |X|X|X|X|X|X|Increment top-of-stack pointer for| | | | | | | | | |FPU register stack | \------------------------------------------------------------------------------/ Description FINCSTP adds one (without carry) to the three-bit TOP field of the FPU status word. Operation IF TOP = 7 THEN TOP � 0; ELSE TOP � TOP + 1; FI; Numeric Exceptions None Protected Mode Exceptions #NM if either EM or TS in CR0 is set. Real Address Mode Exceptions Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions #NM is either EM or TS in CR0 is set. Notes The effect of FINCSTP is to rotate the stack. It does not alter register tags or contents, nor does it transfer data. It is not equivalent to popping the stack, because it does not set the tag of the old stack-top to empty. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FINIT/FNINIT-Initialize Floating-Point Unit
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9B DB E3 |FINIT |X|X|X|X|X|X|Initialize FPU after checking for | | | | | | | | | |unmasked FP error condition | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DB E3 |FNINIT |X|X|X|X|X|X|Initialize FPU without checking | | | | | | | | | |for unmasked FP error condition | \------------------------------------------------------------------------------/
The initialization instructions set the FPU into a known state, unaffected by any previous activity. The FPU control word is set to 037FH (round to nearest, all exceptions masked, 64-bit precision). The status word is cleared (no exception flags set, stack register R0=stack-top). The stack registers are all tagged as empty. The error pointers (both instruction and data) are cleared.
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9B DB E3 |FINIT |X|X|X|X|X|X|Initialize FPU after checking for | | | | | | | | | |unmasked FP error condition | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DB E3 |FNINIT |X|X|X|X|X|X|Initialize FPU without checking | | | | | | | | | |for unmasked FP error condition | \------------------------------------------------------------------------------/ Description The initialization instructions set the FPU into a known state, unaffected by any previous activity. The FPU control word is set to 037FH (round to nearest, all exceptions masked, 64-bit precision). The status word is cleared (no exception flags set, stack register R0=stack-top). The stack registers are all tagged as empty. The error pointers (both instruction and data) are cleared. Operation CW � 037FH; (* Control word *) SW � 0; (*Status word*) TW � FFFFH; (* Tag word *) FEA � 0; FDS � 0; (* Data pointer *) FIP � 0; FOP � 0; FCS � 0; (* Instruction pointer *) FPU Flags Affected /-----------\ |C0|C1|C2|C3| |--+--+--+--| |0 |0 |0 |0 | \-----------/ C0, C1, C2, C3 cleared. Numeric Exceptions None Protected Mode Exceptions #NM if either EM or TS in CR0 is set. Real Address Mode Exceptions Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions #NM if either EM or TS in CR0 is set. Notes FINIT checks for unmasked floating-point error conditions before performing the initialization; FNINIT does not. On the Pentium processor, unlike the Intel387 math coprocessor, FINIT and FNINIT clear the error pointers. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FIST/FISTP-Store Integer
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DF /2 |FIST m16int |X|X|X|X|X|X|Store ST in m16int | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DB /2 |FIST m32int |X|X|X|X|X|X|Store ST in m32int | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DF /3 |FISTP m16int |X|X|X|X|X|X|Store ST in m16int and pop ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DB /3 |FISTP m32int |X|X|X|X|X|X|Store ST in m32int and pop ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DF /7 |FISTP m64int |X|X|X|X|X|X|Store ST in m64int and pop ST | \------------------------------------------------------------------------------/
FIST converts the value in ST into a signed integer according to the RC field of the control word and transfers the result to the destination. ST remains unchanged. FIST accepts word and short integer destinations; FISTP accepts these and long integers as well.
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DF /2 |FIST m16int |X|X|X|X|X|X|Store ST in m16int | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DB /2 |FIST m32int |X|X|X|X|X|X|Store ST in m32int | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DF /3 |FISTP m16int |X|X|X|X|X|X|Store ST in m16int and pop ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DB /3 |FISTP m32int |X|X|X|X|X|X|Store ST in m32int and pop ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DF /7 |FISTP m64int |X|X|X|X|X|X|Store ST in m64int and pop ST | \------------------------------------------------------------------------------/ Description FIST converts the value in ST into a signed integer according to the RC field of the control word and transfers the result to the destination. ST remains unchanged. FIST accepts word and short integer destinations; FISTP accepts these and long integers as well. Operation DEST � ST(0); IF instruction = FISTP THEN pop ST FI; Numeric Exceptions P, I, IS. Protected Mode Exceptions #GP(0) if the destination is in a nonwritable segment; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault; #NM if either EM or TS in CR0 is set; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to 0FFFFH; Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Notes Negative zero is stored with the same encoding (00..00) as positive zero. If the value is too large to represent as an integer, an I exception is raised. The masked response is to write the most negative integer to memory . Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FLD-Load Real
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 /0 |FLD m32real |X|X|X|X|X|X|Push m32real onto the FPU stack | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DD /0 |FLD m64real |X|X|X|X|X|X|Push m64real onto the FPU stack | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DB /5 |FLD m80real |X|X|X|X|X|X|Push m80real onto the FPU stack | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 C0+i |FLD ST(i) |X|X|X|X|X|X|Push ST(i) onto the FPU stack | \------------------------------------------------------------------------------/
FLD pushes the source operand onto the FPU stack. If the source is a register, the register number used is that before the stack-top pointer is decremented. In particular, coding FLD ST(0) duplicates the stack top.
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 /0 |FLD m32real |X|X|X|X|X|X|Push m32real onto the FPU stack | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DD /0 |FLD m64real |X|X|X|X|X|X|Push m64real onto the FPU stack | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DB /5 |FLD m80real |X|X|X|X|X|X|Push m80real onto the FPU stack | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 C0+i |FLD ST(i) |X|X|X|X|X|X|Push ST(i) onto the FPU stack | \------------------------------------------------------------------------------/ Description FLD pushes the source operand onto the FPU stack. If the source is a register, the register number used is that before the stack-top pointer is decremented. In particular, coding FLD ST(0) duplicates the stack top. Operation Decrement FPU stack-top pointer; ST(0) � SRC; Numeric Exceptions D, I, IS. Protected Mode Exceptions #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF( fault-code) for a page fault; #NM if either EM or TS in CR0 is set; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to 0FFFFH; Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Notes If the source operand is single- or double-real format, it is automatically converted to the extended-real format. Loading an extended-real operand does not require conversion, so the I and D exceptions will not occur in this case. ST(7) must be empty to avoid causing an invalid-operation exception. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ-Load Constant
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 E8 |FLD1 |X|X|X|X|X|X|Push +1.0 onto the FPU Stack | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 E9 |FLDL2T |X|X|X|X|X|X|Push log210 onto the FPU stack | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 EA |FLDL2E |X|X|X|X|X|X|Push log2e onto the FPU stack | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 EB |FLDPI |X|X|X|X|X|X|Load ã (pi) onto the FPU stack | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 EC |FLDLG2 |X|X|X|X|X|X|Push log102 onto the FPU stack | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 ED |FLDLN2 |X|X|X|X|X|X|Push loge2 onto the FPU stack | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 EE |FLDZ |X|X|X|X|X|X|Push +0.0 onto the FPU stack | \------------------------------------------------------------------------------/
Each of the constant instructions pushes a commonly-used constant (in extended-real format) onto the FPU stack.
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 E8 |FLD1 |X|X|X|X|X|X|Push +1.0 onto the FPU Stack | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 E9 |FLDL2T |X|X|X|X|X|X|Push log210 onto the FPU stack | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 EA |FLDL2E |X|X|X|X|X|X|Push log2e onto the FPU stack | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 EB |FLDPI |X|X|X|X|X|X|Load ã (pi) onto the FPU stack | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 EC |FLDLG2 |X|X|X|X|X|X|Push log102 onto the FPU stack | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 ED |FLDLN2 |X|X|X|X|X|X|Push loge2 onto the FPU stack | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 EE |FLDZ |X|X|X|X|X|X|Push +0.0 onto the FPU stack | \------------------------------------------------------------------------------/ Description Each of the constant instructions pushes a commonly-used constant (in extended-real format) onto the FPU stack. Operation Decrement FPU stack-top pointer; ST(0) � CONSTANT; Numeric Exceptions IS Protected Mode Exceptions #NM if either EM or TS in CR0 is set. Real Address Mode Exceptions Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions #NM if either EM or TS in CR0 is set. Notes ST(7) must be empty to avoid an invalid exception. An internal 66-bit constant is used and rounded to external-real format (as specified by the RC bit of the control words). The precision exception is not raised. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FLDCW-Load Control Word
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 /5 |FLDCW m16 |X|X|X|X|X|X|Load FPU control word from m16 | \------------------------------------------------------------------------------/
FLDCW replaces the current value of the FPU control word with the value contained in the specified memory word.
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 /5 |FLDCW m16 |X|X|X|X|X|X|Load FPU control word from m16 | \------------------------------------------------------------------------------/ Description FLDCW replaces the current value of the FPU control word with the value contained in the specified memory word. Operation CW � SRC; Numeric Exceptions None, except for unmasking an existing exception. Protected Mode Exceptions #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF( fault-code) for a page fault; #NM if either EM or TS in CR0 is set; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to 0FFFFH; Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Notes FLDCW is typically used to establish or change the FPU's mode of operation. If an exception bit in the status word is set, loading a new control word that unmasks that exception will result in a floating-point error condition . When changing modes, the recommended procedure is to clear any pending exceptions before loading the new control word. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FLDENV-Load FPU Environment
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 /4 |FLDENV m14byte/ |X|X|X|X|X|X|Load FPU environment from m14byte | | |m28byte | | | | | | |or m28byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 /4 |FLDENVW m14byte | | | |X|X|X|Load FPU environment from m14byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 /4 |FLDENVD m28byte | | | |X|X|X|Load FPU environment from m28byte | \------------------------------------------------------------------------------/
FLDENV reloads the FPU environment from the memory area defined by the source operand. This data should have been written by previous FSTENV or FNSTENV instruction. The FPU environment conists of the FPU control word, status word, tag word, and error pointers (both data and instruction). The environment layout in memory depends on both the operand size and the current operating mode of the processor. The USE attribute of the current code segment determines the operand size: The 14-byte operand applies to a USE16 segment, and the 28- byte operand applies to a USE32 segment. Refer to the Intel documentation for figures of the environment layouts for both operand sizes in both real mode and protected mode. (In virtual-8086 mode, the real mode layout is used.) FLDENV should be run in the same operating mode as the corresponding FSTENV or FNSTENV.
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 /4 |FLDENV m14byte/ |X|X|X|X|X|X|Load FPU environment from m14byte | | |m28byte | | | | | | |or m28byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 /4 |FLDENVW m14byte | | | |X|X|X|Load FPU environment from m14byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 /4 |FLDENVD m28byte | | | |X|X|X|Load FPU environment from m28byte | \------------------------------------------------------------------------------/ Description FLDENV reloads the FPU environment from the memory area defined by the source operand. This data should have been written by previous FSTENV or FNSTENV instruction. The FPU environment conists of the FPU control word, status word, tag word, and error pointers (both data and instruction). The environment layout in memory depends on both the operand size and the current operating mode of the processor. The USE attribute of the current code segment determines the operand size: The 14-byte operand applies to a USE16 segment, and the 28- byte operand applies to a USE32 segment. Refer to the Intel documentation for figures of the environment layouts for both operand sizes in both real mode and protected mode. (In virtual-8086 mode, the real mode layout is used.) FLDENV should be run in the same operating mode as the corresponding FSTENV or FNSTENV. Operation FPU environment � SRC; Numeric Exceptions None, except for loading an unmasked exception. Protected Mode Exceptions #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF( fault-code) for a page fault; #NM if either EM or TS in CR0 is set; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to 0FFFFH; Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Notes If the environment image contains an unmasked exception, loading it will result in a floating-point error condition. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FMUL/FMULP/FIMUL-Multiply
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DE C9 |FMUL |X|X|X|X|X|X|Multiply ST(1) by ST and pop ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D8 /1 |FMUL m32real |X|X|X|X|X|X|Multiply ST by m32real | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DC /1 |FMUL m64real |X|X|X|X|X|X|Multiply ST by m64real | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D8 C8+i |FMUL ST,ST(i) |X|X|X|X|X|X|Multiply ST by ST(i) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DC C8+i |FMUL ST(i),ST |X|X|X|X|X|X|Multiply ST(i) by ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DE C8+i |FMULP ST(i),ST |X|X|X|X|X|X|Multiply ST(i) by ST and pop ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DE /1 |FIMUL m16int |X|X|X|X|X|X|Multiply ST by m16int | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DA /1 |FIMUL m32int |X|X|X|X|X|X|Multiply ST by m32int | \------------------------------------------------------------------------------/
The multiplication instructions multiply the destination operand by the source operand and return the product to the destination.
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DE C9 |FMUL |X|X|X|X|X|X|Multiply ST(1) by ST and pop ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D8 /1 |FMUL m32real |X|X|X|X|X|X|Multiply ST by m32real | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DC /1 |FMUL m64real |X|X|X|X|X|X|Multiply ST by m64real | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D8 C8+i |FMUL ST,ST(i) |X|X|X|X|X|X|Multiply ST by ST(i) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DC C8+i |FMUL ST(i),ST |X|X|X|X|X|X|Multiply ST(i) by ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DE C8+i |FMULP ST(i),ST |X|X|X|X|X|X|Multiply ST(i) by ST and pop ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DE /1 |FIMUL m16int |X|X|X|X|X|X|Multiply ST by m16int | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DA /1 |FIMUL m32int |X|X|X|X|X|X|Multiply ST by m32int | \------------------------------------------------------------------------------/ Description The multiplication instructions multiply the destination operand by the source operand and return the product to the destination. Operation DEST � DEST * SRC; IF instruction = FMULP THEN pop ST FI; Numeric Exceptions P, U, O, D, I. Protected Mode Exceptions #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF( fault-code) for a page fault; #NM if either EM or TS in CR0 is set; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to 0FFFFH; Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Notes If the source operand is in memory, it is automatically converted to the extended-real format. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FNOP-No Operation
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 D0 |FNOP |X|X|X|X|X|X|No operation is performed | \------------------------------------------------------------------------------/
FNOP performs no operation. It affects nothing except instruction pointers.
Description FPU Flags Affected Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 D0 |FNOP |X|X|X|X|X|X|No operation is performed | \------------------------------------------------------------------------------/ Description FNOP performs no operation. It affects nothing except instruction pointers. Numeric Exceptions None Protected Mode Exceptions #NM if either EM or TS in CR0 is set. Real Address Mode Exceptions Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions #NM if either EM or TS in CR0 is set. Related Information Description FPU Flags Affected Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FPATAN-Partial Arctangent
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 F3 |FPATAN |X|X|X|X|X|X|Replaces ST(1) with arctan(ST(1) ö| | | | | | | | | |ST) and pop ST | \------------------------------------------------------------------------------/
The partial arctangent instruction computes the arctangent of ST(1) ö ST, and returns computed value, expressed in radians, to ST(1). It then pops ST . The result has the same sign as the operand from ST(1), and a magnitude less than ã.
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 F3 |FPATAN |X|X|X|X|X|X|Replaces ST(1) with arctan(ST(1) ö| | | | | | | | | |ST) and pop ST | \------------------------------------------------------------------------------/ Description The partial arctangent instruction computes the arctangent of ST(1) ö ST, and returns computed value, expressed in radians, to ST(1). It then pops ST . The result has the same sign as the operand from ST(1), and a magnitude less than ã. Operation ST(1) � arctan(ST(1) ö ST); pop ST; Numeric Exceptions P, U, D, I, IS. Protected Mode Exceptions #NM if either EM or TS in CR0 is set. Real Address Mode Exceptions Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions #NM if either EM or TS in CR0 is set. Notes There is no restriction on the range of arguments that FPATAN can accept. The fact that FPATAN takes two arguments and computes the arctangent of their ratio simplifies the calculation of other trigonometric functions. For instance, arcsin(x) (which is the arctangent of x ö û(1-xý)) can be computed using the following sequence of operations: Push x onto the FPU stack; compute û(1-xý) and push the resulting value onto the stack; run FPATAN. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FPREM-Partial Remainder
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 F8 |FPREM |X|X|X|X|X|X|Replace ST with the remainder | | | | | | | | | |obtained on dividing ST by ST(1) | \------------------------------------------------------------------------------/
The partial remainder instruction computes the remainder obtained on dividing ST by ST(1), and leaves the result in ST. The sign of the remainder is the same as the sign of the original dividend in ST. The magnitude of the remainder is less than that of the modulus.
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 F8 |FPREM |X|X|X|X|X|X|Replace ST with the remainder | | | | | | | | | |obtained on dividing ST by ST(1) | \------------------------------------------------------------------------------/ Description The partial remainder instruction computes the remainder obtained on dividing ST by ST(1), and leaves the result in ST. The sign of the remainder is the same as the sign of the original dividend in ST. The magnitude of the remainder is less than that of the modulus. Operation EXPDIF � exponent(ST) - exponent(ST(1)); IF EXPDIF < 64 THEN Q � integer obtained by chopping ST ö ST(1) toward zero; ST � ST - (ST(1) * Q); C2 � 0; C0, C1, C3 � three least-significant bits of Q; (* Q2, Q1, Q0 *) ELSE C2 � 1; N � a number between 32 and 63; QQ � integer obtained by chopping (ST ö ST(1)) ö 2EXPDIF-N toward zero; ST � ST - (ST(1) * QQ * 2EXPDIF-N; FI; Numeric Exceptions U, D, I, IS. Protected Mode Exceptions #NM if either EM or TS in CR0 is set. Real Address Mode Exceptions Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions #NM if either EM or TS in CR0 is set. Notes FREM produces an exact result; the precision (inexact) exception does not occur and the rounding control has no effect. The FPREM instruction is not the remainder operation specified in IEEE Std 754. To get that remainder, the FPREM1 instruction should be used. FPREM is supported for compatibility with the 8087 and Intel287 math coprocessors. FPREM works by iterative subtraction, can reduce the exponent of ST by no more than 63 in one execution. If FPREM succeeds in producing a remainder that is less than the modulus, the function is complete and the C2 flag is cleared. Otherwise, C2 is set, and the result in ST is called the partial remainder. The exponent of the partial remainder is less than the exponent of the original dividend by at least 32. Software can run the instruction again (using the partial remainder in ST as the dividend) until C2 is cleared. A higher-priority interrupting routine that needs the FPU can force a context switch between the instructions in the remainder loop. An important use of FPREM is to reduce the arguments of periodic functions. When reduction is complete, FPREM provides the three least-significant bits of the quotient in flags C3, C1, and C0. This is important in argument reduction for the tangent function (using a modulus of ã/4), because it locates the original angle in the correct one of eight sectors of the unit circle. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FPREM1-Partial Remainder
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 F5 |FPREM1 | | | |X|X|X|Replace ST with the remainder | | | | | | | | | |obtained on dividing ST by ST(1) | \------------------------------------------------------------------------------/
The partial remainder instruction computes the remainder obtained on dividing ST by ST(1), and leaves the result in ST. The magnitude of the remainder is less than that of the modulus.
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 F5 |FPREM1 | | | |X|X|X|Replace ST with the remainder | | | | | | | | | |obtained on dividing ST by ST(1) | \------------------------------------------------------------------------------/ Description The partial remainder instruction computes the remainder obtained on dividing ST by ST(1), and leaves the result in ST. The magnitude of the remainder is less than that of the modulus. Operation EXPDIF � exponent(ST) - exponent(ST(1)); IF EXPDIF < 64 THEN Q � integer obtained by rounding ST ö ST(1) to the nearest integer; (*or the nearest even integer if the result is exactly halfway between 2 integers *) ST � ST - (ST(1) * Q); C2 � 0; Q � ST - (ST(1) * Q); C0, C1, C3 � three least-significant bits of Q; (* Q2, Q1, Q0 *) C2 � 0; C0, C1, C3 � three least-significant bits of Q; (* Q2, Q1, Q0 *) ELSE C2 � 1; N � a number between 32 and 63; QQ � integer obtained by chopping (ST ö ST(1)) ö 2EXPDIF-N; toward zero; ST � ST - (ST(1) * QQ * 2EXPDIF-N FI; Numeric Exceptions U, D, I, IS. Protected Mode Exceptions #NM if either EM or TS in CR0 is set. Real Address Mode Exceptions Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions #NM if either EM or TS in CR0 is set. Notes FPREM1 produces an exact result; the precision (inexact) exception does not occur and the rounding control has no effect. The FPREM1 instruction is not the remainder operation specified in IEEE Std 754. It differs from FPREM in the way it rounds the quotient of ST and ST(1 ), when the exponent difference of exp(ST) -exp(ST)1 is less than 64. FPREM1 works by iterative subtraction, can reduce the exponent of ST by no more than 63 in one execution. If FPREM1 succeeds in producing a remainder that is less than one half the modulus, the function is complete and the C2 flag is cleared. Otherwise, C2 is set, and the result in ST is called the partial remainder. The exponent of the partial remainder is less than the exponent of the original dividend by at least 32. Software can run the instruction again (using the partial remainder in ST as the dividend) until C2 is cleared. A higher-priority interrupting routine that needs the FPU can force a context switch between the instructions in the remainder loop. An important use of FPREM1 is to reduce the arguments of periodic functions . When reduction is complete, FPREM1 provides the three least-significant bits of the quotient in flags C3, C1, and C0. This is important in argument reduction for the tangent function (using a modulus of ã/4), because it locates the original angle in the correct one of eight sectors of the unit circle. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FPTAN-Partial Tangent
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 F2 |FPTAN |X|X|X|X|X|X|Replace ST with its tangent and | | | | | | | | | |push 1 onto the FPU stack | \------------------------------------------------------------------------------/
The partial tangent instruction replaces the contents of ST with tan(ST), and then pushes 1.0 onto the FPU stack. ST, expressed in radians, must lie in the range |0| < 263.
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 F2 |FPTAN |X|X|X|X|X|X|Replace ST with its tangent and | | | | | | | | | |push 1 onto the FPU stack | \------------------------------------------------------------------------------/ Description The partial tangent instruction replaces the contents of ST with tan(ST), and then pushes 1.0 onto the FPU stack. ST, expressed in radians, must lie in the range |0| < 263. Operation IF operand is in range THEN C2 � 0; ST � tan(ST); Decrement stack-top pointer; ST � 1.0; ELSE C2 � 1; FI; FPU Flags Affected /-----------\ |C0|C1|C2|C3| |--+--+--+--| |? |* |* |? | \-----------/ C1, C2 as described in FPU Flags Affected; C0, C3 undefined. Numeric Exceptions P, U, D, I, IS. Protected Mode Exceptions #NM if either EM or TS in CR0 is set. Real Address Mode Exceptions Interrupt 7 either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions #NM if either EM or TS in CR0 is set. Notes If the operand is outside the acceptable range, the C2 flag is set, and ST remains unchanged. It is the programmer's responsibility to reduce the operand to an absolute value smaller than 263 by subtracting an appropriate integer multiple of 2ã. Refer to the Intel documentation 6 for a discussion of the proper value to use for ã in performing such reductions. The fact that FPTAN pushes 1.0 onto the FPU stack after computing tan(ST) maintains compatibility with the 8087 and Intel287 math coprocessors, and simplifies the calculation of other trigonometric functions. For instance, the cotangent (which is the reciprocal of the tangent) can be computed by running FDIVR after FPTAN. ST(7) must be empty to avoid an invalid-operation exception. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FRNDINT-Round to Integer
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 FC |FRNDINT |X|X|X|X|X|X|Round ST to an integer | \------------------------------------------------------------------------------/
The round to integer instruction rounds the value in ST to an integer according to the RC field of the FPU control word.
Description FPU Flags Affected Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 FC |FRNDINT |X|X|X|X|X|X|Round ST to an integer | \------------------------------------------------------------------------------/ Description The round to integer instruction rounds the value in ST to an integer according to the RC field of the FPU control word. Operation ST � rounded ST; Numeric Exceptions P, D, I, IS. Protected Mode Exceptions #NM if either EM or TS in CR0 is set. Real Address Mode Exceptions Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions #NM if either EM or TS in CR0 is set. Related Information Description FPU Flags Affected Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FRSTOR/FRSTRW/FRSTRD-Restore FRU State
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DD /4 |FRSTOR m94byte/ |X|X|X|X|X|X|Load FPU state from m94byte or | | |m108byte | | | | | | |m108byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DD /5 |FRSTORW m94byte | | | |X|X|X|Load FPU state from m94byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DD /4 |FRSTORD m108byte | | | |X|X|X|Load FPU state from m108byte | \------------------------------------------------------------------------------/
FRSTOR reloads the FPU state (environment and register stack) from the memory area defined by the source operand. This data should have been written by a previous FSAVE or FNSAVE instruction. The FPU environment consists of the FPU control word, status word, tag word , and error pointers (both data and instruction). The environment layout in memory depends on both the operand size and the current operating mode of the processor. The USE attribute of the current code segment determines the operand size: the 14-byte operand applies to a USE16 segment, and the 28- byte operand applies to a USE32 segment. Refer to the Intel documentation for the environment layouts for both operand sizes in both real mode and protected mode. (In virtual-8086 mode, the real mode layout is used.) The stack registers, beginning with ST and ending with ST(7), are in the 80 bytes that immediately follow the environment image. FRSTOR should be run in the same operating mode as the corresponding FSAVE or FNSAVE.
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DD /4 |FRSTOR m94byte/ |X|X|X|X|X|X|Load FPU state from m94byte or | | |m108byte | | | | | | |m108byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DD /5 |FRSTORW m94byte | | | |X|X|X|Load FPU state from m94byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DD /4 |FRSTORD m108byte | | | |X|X|X|Load FPU state from m108byte | \------------------------------------------------------------------------------/ Description FRSTOR reloads the FPU state (environment and register stack) from the memory area defined by the source operand. This data should have been written by a previous FSAVE or FNSAVE instruction. The FPU environment consists of the FPU control word, status word, tag word , and error pointers (both data and instruction). The environment layout in memory depends on both the operand size and the current operating mode of the processor. The USE attribute of the current code segment determines the operand size: the 14-byte operand applies to a USE16 segment, and the 28- byte operand applies to a USE32 segment. Refer to the Intel documentation for the environment layouts for both operand sizes in both real mode and protected mode. (In virtual-8086 mode, the real mode layout is used.) The stack registers, beginning with ST and ending with ST(7), are in the 80 bytes that immediately follow the environment image. FRSTOR should be run in the same operating mode as the corresponding FSAVE or FNSAVE. Operation FPU state � SRC; Numeric Exceptions None, except for loading an unmasked exception. Protected Mode Exceptions #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF( fault-code) for a page fault; #NM if either EM or TS in CR0 is set; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to 0FFFFH; Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Notes If the state image contains an unmasked exception, loading it will result in a floating-point error condition. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FSAVE/FNSAVE-Store FPU State
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9B DD /6 |FSAVE m94byte/ |X|X|X|X|X|X|Store FPU state to m94byte or | | |m108byte | | | | | | |m108byte after checking for | | | | | | | | | |unmasked FP error condition; then | | | | | | | | | |re-initialize the CPU | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9B DD /6 |FSAVEW m94byte | | | |X|X|X|Store FPU state to m94byte after | | | | | | | | | |checking for unmasked FP error | | | | | | | | | |condition; then re-initialize the | | | | | | | | | |FPU | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9B DD /6 |FSAVED m108byte | | | |X|X|X|Store FPU state to m108byte after | | | | | | | | | |checking for unmasked FP error | | | | | | | | | |condition; then re-initialize the | | | | | | | | | |FPU | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DD /6 |FNSAVE m94byte/ |X|X|X|X|X|X|Store FPU environment to m94byte | | |m108byte | | | | | | |or m108byte without checking for | | | | | | | | | |unmasked FP error condition; then | | | | | | | | | |re-initialize the FPU | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DD /6 |FNSAVEW m94byte | | | |X|X|X|Store FPU environment to m94byte | | | | | | | | | |without checking for unmasked FP | | | | | | | | | |error condition; then | | | | | | | | | |re-initialize the FPU | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DD /6 |FNSAVED m108byte | | | |X|X|X|Store FPU environment to m108byte | | | | | | | | | |without checking for unmasked FP | | | | | | | | | |error condition; then | | | | | | | | | |re-initialize the FPU | \------------------------------------------------------------------------------/
The save instructions write the current FPU state (environment and register stack) to the specified destination, and then re-initialize the FPU. The environment consists of the FPU control word, status word, tag word, and error pointers (both data and instruction). The state layout in memory depends on both operand size and the current operating mode of the processor. The USE attribute of the current code segment determines the operand size: the 94-byte operand applies to USE16 segment, and the 108-byte operand applies to a USE32 segment. Refer to the Intel documentation for the environment layouts for both operand sizes in both real mode and protected mode. (In virtual-8086 mode, the real mode layout is used.) The stack registers, beginning with ST and ending with ST( 7), are stored in the 80 bytes that immediately follow the environment image.
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9B DD /6 |FSAVE m94byte/ |X|X|X|X|X|X|Store FPU state to m94byte or | | |m108byte | | | | | | |m108byte after checking for | | | | | | | | | |unmasked FP error condition; then | | | | | | | | | |re-initialize the CPU | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9B DD /6 |FSAVEW m94byte | | | |X|X|X|Store FPU state to m94byte after | | | | | | | | | |checking for unmasked FP error | | | | | | | | | |condition; then re-initialize the | | | | | | | | | |FPU | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9B DD /6 |FSAVED m108byte | | | |X|X|X|Store FPU state to m108byte after | | | | | | | | | |checking for unmasked FP error | | | | | | | | | |condition; then re-initialize the | | | | | | | | | |FPU | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DD /6 |FNSAVE m94byte/ |X|X|X|X|X|X|Store FPU environment to m94byte | | |m108byte | | | | | | |or m108byte without checking for | | | | | | | | | |unmasked FP error condition; then | | | | | | | | | |re-initialize the FPU | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DD /6 |FNSAVEW m94byte | | | |X|X|X|Store FPU environment to m94byte | | | | | | | | | |without checking for unmasked FP | | | | | | | | | |error condition; then | | | | | | | | | |re-initialize the FPU | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DD /6 |FNSAVED m108byte | | | |X|X|X|Store FPU environment to m108byte | | | | | | | | | |without checking for unmasked FP | | | | | | | | | |error condition; then | | | | | | | | | |re-initialize the FPU | \------------------------------------------------------------------------------/ Description The save instructions write the current FPU state (environment and register stack) to the specified destination, and then re-initialize the FPU. The environment consists of the FPU control word, status word, tag word, and error pointers (both data and instruction). The state layout in memory depends on both operand size and the current operating mode of the processor. The USE attribute of the current code segment determines the operand size: the 94-byte operand applies to USE16 segment, and the 108-byte operand applies to a USE32 segment. Refer to the Intel documentation for the environment layouts for both operand sizes in both real mode and protected mode. (In virtual-8086 mode, the real mode layout is used.) The stack registers, beginning with ST and ending with ST( 7), are stored in the 80 bytes that immediately follow the environment image. Operation DEST � FPU state; initialize FPU; (* Equivalent to FNINIT *) FPU Flags Affected /-----------\ |C0|C1|C2|C3| |--+--+--+--| |0 |0 |0 |0 | \-----------/ C0, C1, C2, C3 cleared. Numeric Exceptions None Protected Mode Exceptions #GP(0) if the destination is in a nonwritable segment; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault; #NM if either EM or TS in CR0 is set; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to 0FFFFH; Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Notes FSAVE and FNSAVE do not store the FPU state until all FPU activity is complete. Thus, the saved image reflects the state of the FPU after any previously decoded instruction has been run. If a program is to read from the memory image of the state following a save instruction, it must issue an FWAIT instruction to ensure that the storage is complete. The save instructions are typically used when an operating system needs to perform a context switch, or an exception handler needs to use the FPU, or an application program wants to pass a "clean" FPU to a subroutine. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FSCALE-Scale
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 FD |FSCALE |X|X|X|X|X|X|Scale ST by ST(1) | \------------------------------------------------------------------------------/
The scale instruction inteprets the value in (ST(1) as an integer, and adds this integer to the exponent of ST. Thus, FSCALE provides rapid multiplication or division by integral powers of 2.
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 FD |FSCALE |X|X|X|X|X|X|Scale ST by ST(1) | \------------------------------------------------------------------------------/ Description The scale instruction inteprets the value in (ST(1) as an integer, and adds this integer to the exponent of ST. Thus, FSCALE provides rapid multiplication or division by integral powers of 2. Operation ST � ST * 2ST(1); Numeric Exceptions P, U, O, D, I, IS. Protected Mode Exceptions #NM if either EM or TS in CR0 is set. Real Address Mode Exceptions Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions #NM if either EM or TS in CR0 is set. Notes FSCALE can be used as an inverse to FXTRACT. Because FSCALE does not pop the exponent part, however, FSCALE must be followed by FSTP ST(1) in order to completely undo the effect of a preceding FXTRACT. There is no limit on the range of the scale factor in ST(1). If the value is not integral, FSCALE uses the nearest integer smaller in magnitude; i.e. , it chops the value toward 0. If the resulting integer is zero, the value in ST is not changed. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FSETPM-Set Protected Mode
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DB E4 |FSETPM | | |X| | | |Sets the operating mode of the | | | | | | | | | |80287 to protected virtual address| | | | | | | | | |mode | \------------------------------------------------------------------------------/
Sets the operating mode of the 80287 to Protected Virtual-Address mode. When the 80287 is first initialized following hardware RESET, it operates in Real-Address mode, just as does the 80286 CPU. Once the 80287 NPX has been set into Protected mode, only a hardware RESET can return the NPX to operation in Real-Address mode. When the 80287 operates in Protected mode, the NPX exception pointers are represented differently than they are in Real-Address mode (see the FSAVE and FSTENV instructions). This distinction is evident primarily to writers of numeric exception handlers, however. For general application programmers, the operating mode of the 80287 need not be a concern.
Description FPU Flags Affected Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DB E4 |FSETPM | | |X| | | |Sets the operating mode of the | | | | | | | | | |80287 to protected virtual address| | | | | | | | | |mode | \------------------------------------------------------------------------------/ Description Sets the operating mode of the 80287 to Protected Virtual-Address mode. When the 80287 is first initialized following hardware RESET, it operates in Real-Address mode, just as does the 80286 CPU. Once the 80287 NPX has been set into Protected mode, only a hardware RESET can return the NPX to operation in Real-Address mode. When the 80287 operates in Protected mode, the NPX exception pointers are represented differently than they are in Real-Address mode (see the FSAVE and FSTENV instructions). This distinction is evident primarily to writers of numeric exception handlers, however. For general application programmers, the operating mode of the 80287 need not be a concern. Operation FPU Flags Affected /-----------\ |C0|C1|C2|C3| |--+--+--+--| | | | | | \-----------/ Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Related Information Description FPU Flags Affected Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions FSIN-Sine
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 FE |FSIN | | | |X|X|X|Replace ST with its sine | \------------------------------------------------------------------------------/
The sine instruction replaces the contents of ST with sin(ST). ST, expressed in radians, must lie in the range |01| < 263.
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 FE |FSIN | | | |X|X|X|Replace ST with its sine | \------------------------------------------------------------------------------/ Description The sine instruction replaces the contents of ST with sin(ST). ST, expressed in radians, must lie in the range |01| < 263. Operation If operand is in range THEN C2 � 0; ELSE C2 � 1; FI: FPU Flags Affected /-----------\ |C0|C1|C2|C3| |--+--+--+--| |? |* |* |? | \-----------/ C1, C2 as described in FPU Flags Affected; C0, C3 undefined. Numeric Exceptions P, U, D, I, IS. Protected Mode Exceptions #NM if either EM or TS in CR0 is set. Real Address Mode Exceptions Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions #NM if either EM or TS in CR0 is set. Notes If the operand is outside the acceptable range, the C2 flag is set, and ST remains unchanged. It is the programmer's responsibility to reduce the operand to an absolute value smaller than 263 by subtracting an appropriate integer multiple of 2ã. Refer to the Intel documentation for a discussion of the proper value to use the ã in performing such reductions. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FSINCOS-Sine and Cosine
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 FB |FSINCOS | | | |X|X|X|Compute the sine and cosine of ST;| | | | | | | | | |replace ST with the sine, then | | | | | | | | | |push the cosine onto the FPU stack| \------------------------------------------------------------------------------/
FSINCOS computes both sin(ST) and cos(ST), replaces ST with the sine and then pushes the cosine onto the FPU stack. ST, expressed in radians, must lie in the range |0| < 263.
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 FB |FSINCOS | | | |X|X|X|Compute the sine and cosine of ST;| | | | | | | | | |replace ST with the sine, then | | | | | | | | | |push the cosine onto the FPU stack| \------------------------------------------------------------------------------/ Description FSINCOS computes both sin(ST) and cos(ST), replaces ST with the sine and then pushes the cosine onto the FPU stack. ST, expressed in radians, must lie in the range |0| < 263. Operation IF operand is in range THEN C2 � 0; TEMP � cos(ST); ST � sin(ST); Decrement FPU stack-top pointer; ST � TEMP; ELSE C2 � 1; FI: FPU Flags Affected /-----------\ |C0|C1|C2|C3| |--+--+--+--| |? |* |* |? | \-----------/ C1, C2 as described in FPU Flags Affected; C0, C3 undefined. Numeric Exceptions P, U, D, I, IS. Protected Mode Exceptions #NM if either EM or TS in CR0 is set. Real Address Mode Exceptions Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions #NM if either EM or TS in CR0 is set. Notes If the operand is outside the acceptable range, the C2 flag is set, and ST remains unchanged. It is the programmer's responsibility to reduce the operand to an absolute value smaller than 263 by subtracting an appropriate integer multiple of 2ã. Refer to the Intel documentation for a discussion of the proper value to use for ã in performing such reductions. It is faster to run FSINCOS than to run both FSIN and FCOS. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FSQRT-Square Root
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 FA |FSQRT |X|X|X|X|X|X|Replace ST with its square root | \------------------------------------------------------------------------------/
The square root instruction replaces the value in ST with its square root.
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 FA |FSQRT |X|X|X|X|X|X|Replace ST with its square root | \------------------------------------------------------------------------------/ Description The square root instruction replaces the value in ST with its square root. Operation ST � square root of ST; Numeric Exceptions P, D, I, IS. Protected Mode Exceptions #NM if either EM or TS in CR0 is set. Real Address Mode Exceptions Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions #NM if either EM or TS in CR0 is set. Notes The square root of -0 is -0. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FST/FSTP-Store Real
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 /2 |FST m32real |X|X|X|X|X|X|Copy ST to m32real | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DD /2 |FST m64real |X|X|X|X|X|X|Copy ST to m64real | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DD D0+i |FST ST(i) |X|X|X|X|X|X|Copy ST to ST(i) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 /3 |FSTP m32real |X|X|X|X|X|X|Copy ST to m32real and pop ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DD /3 |FSTP m64real |X|X|X|X|X|X|Copy ST to m64real and pop ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DB /7 |FSTP m80real |X|X|X|X|X|X|Copy ST to m80real and pop ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DD D8+i |FSTP ST(i) |X|X|X|X|X|X|Copy ST to ST(i) and pop ST | \------------------------------------------------------------------------------/
FST copies the current value in the ST register to the destination, which can be another register or a single- or double-real memory operand. FSTP copies and then pops ST; it accepts extended-real memory operands as well as the types accepted by FST. If the source is register, the register number used is that before the stack is popped.
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 /2 |FST m32real |X|X|X|X|X|X|Copy ST to m32real | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DD /2 |FST m64real |X|X|X|X|X|X|Copy ST to m64real | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DD D0+i |FST ST(i) |X|X|X|X|X|X|Copy ST to ST(i) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 /3 |FSTP m32real |X|X|X|X|X|X|Copy ST to m32real and pop ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DD /3 |FSTP m64real |X|X|X|X|X|X|Copy ST to m64real and pop ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DB /7 |FSTP m80real |X|X|X|X|X|X|Copy ST to m80real and pop ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DD D8+i |FSTP ST(i) |X|X|X|X|X|X|Copy ST to ST(i) and pop ST | \------------------------------------------------------------------------------/ Description FST copies the current value in the ST register to the destination, which can be another register or a single- or double-real memory operand. FSTP copies and then pops ST; it accepts extended-real memory operands as well as the types accepted by FST. If the source is register, the register number used is that before the stack is popped. Operation DEST � ST(0); IF instruction = FSTP THEN pop ST FI; Numeric Exceptions Register or extended-real destinations: IS Single- or double-real destinations: P, U, O, I, IS Protected Mode Exceptions #GP(0) if the destination is in a nonwritable segment; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in SS segment; #PF(fault-code) for a page fault; #NM if either EM or TS in CR0 is set; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to 0FFFFH; Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Notes If the destination is single- or double-real, the significand is rounded to the width of the destination according to the RC field of the control word, and the exponent is converted to the width and bias of the destination format. The over/underflow condition is checked for as well. If ST contains zero, ñì, or a NaN, then the significand is not rounded, but chopped (on the right) to fit the destination. Nor is the exponent converted; it too is chopped on the right. These operations preserve the value's identity as ì or NaN (exponent all ones). The invalid-operation exception is not raised when the destination is a nonempty stack element. A denormal operand in ST(0) causes an underflow. No denormal operand exception is raised. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FSTCW/FNSTCW-Store Control Word
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9B D9 /7 |FSTCW m16 |X|X|X|X|X|X|Store FPU control word to m16 | | | | | | | | | |after checking for unmasked FP | | | | | | | | | |error condition | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 /7 |FNSTCW m16 |X|X|X|X|X|X|Store FPU control word to m16 | | | | | | | | | |without checking for unmasked FP | | | | | | | | | |error condition | \------------------------------------------------------------------------------/
FSTCW and FNSTCW write the current value of the FPU control word to the specified destination.
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9B D9 /7 |FSTCW m16 |X|X|X|X|X|X|Store FPU control word to m16 | | | | | | | | | |after checking for unmasked FP | | | | | | | | | |error condition | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 /7 |FNSTCW m16 |X|X|X|X|X|X|Store FPU control word to m16 | | | | | | | | | |without checking for unmasked FP | | | | | | | | | |error condition | \------------------------------------------------------------------------------/ Description FSTCW and FNSTCW write the current value of the FPU control word to the specified destination. Operation DEST � CW; Numeric Exceptions None Protected Mode Exceptions #GP(0) if the destination is in a nonwritable segment; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault; #NM if either EM or TS in CR0 is set; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to 0FFFFH; Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code for a page fault; # AC for unaligned memory reference if the current privilege level is 3. Notes FSTCW checks for unmasked floating-point error conditions before storing the control word FNSTCW does not. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FSTENV/FNSTENV-Store FPU Environment
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9B D9 /6 |FSTENV m14byte/ |X|X|X|X|X|X|Store FPU environment to m14byte | | |m28byte | | | | | | |or m28byte after checking for | | | | | | | | | |unmasked FP error condition; then | | | | | | | | | |mask all FP exceptions. | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9B D9 /6 |FSTENVW m14byte | | | |X|X|X|Store FPU environment to m14byte | | | | | | | | | |after checking for unmasked FP | | | | | | | | | |error condition; then mask all FP | | | | | | | | | |exceptions | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9B D9 /6 |FSTENVD m28byte | | | |X|X|X|Store FPU environment to m28byte | | | | | | | | | |after checking for unmasked FP | | | | | | | | | |error condition; then mask all FP | | | | | | | | | |exceptions | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 /6 |FNSTENV m14byte/ |X|X|X|X|X|X|Store FPU environment to m14byte | | |m28byte | | | | | | |or m28byte without checking for | | | | | | | | | |unmasked FP error condition; then | | | | | | | | | |mask all FP exceptions | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 /6 |FNSTENVW m14byte | | | |X|X|X|Store FPU environment to m14byte | | | | | | | | | |without checking for unmasked FP | | | | | | | | | |error condition; then mask all FP | | | | | | | | | |exceptions | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 /6 |FNSTENVD m28byte | | | |X|X|X|Store FPU environment to m28byte | | | | | | | | | |without checking for unmasked FP | | | | | | | | | |error condition; then mask all FP | | | | | | | | | |exceptions | \------------------------------------------------------------------------------/
The store environment instructions write the current FPU environment to the specified destination, and then mask all floating-point exceptions. The FPU environment consists of the FPU control word, status word, tag word, and error pointer (both data and instruction). The environment layout in memory depends on both the operand size and the current operating mode of the processor. The USE attribute of the current code segment determines the operand size: the 14-byte operand applies to a USE16 segment, and the 28-byte operand applies to a USE32 segment. Figures 6-6 through 6-8 show the environment layouts for both operand sizes in both real mode and protected mode. (In virtual-8086 mode, the real mode layout is used).
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9B D9 /6 |FSTENV m14byte/ |X|X|X|X|X|X|Store FPU environment to m14byte | | |m28byte | | | | | | |or m28byte after checking for | | | | | | | | | |unmasked FP error condition; then | | | | | | | | | |mask all FP exceptions. | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9B D9 /6 |FSTENVW m14byte | | | |X|X|X|Store FPU environment to m14byte | | | | | | | | | |after checking for unmasked FP | | | | | | | | | |error condition; then mask all FP | | | | | | | | | |exceptions | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9B D9 /6 |FSTENVD m28byte | | | |X|X|X|Store FPU environment to m28byte | | | | | | | | | |after checking for unmasked FP | | | | | | | | | |error condition; then mask all FP | | | | | | | | | |exceptions | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 /6 |FNSTENV m14byte/ |X|X|X|X|X|X|Store FPU environment to m14byte | | |m28byte | | | | | | |or m28byte without checking for | | | | | | | | | |unmasked FP error condition; then | | | | | | | | | |mask all FP exceptions | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 /6 |FNSTENVW m14byte | | | |X|X|X|Store FPU environment to m14byte | | | | | | | | | |without checking for unmasked FP | | | | | | | | | |error condition; then mask all FP | | | | | | | | | |exceptions | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 /6 |FNSTENVD m28byte | | | |X|X|X|Store FPU environment to m28byte | | | | | | | | | |without checking for unmasked FP | | | | | | | | | |error condition; then mask all FP | | | | | | | | | |exceptions | \------------------------------------------------------------------------------/ Description The store environment instructions write the current FPU environment to the specified destination, and then mask all floating-point exceptions. The FPU environment consists of the FPU control word, status word, tag word, and error pointer (both data and instruction). The environment layout in memory depends on both the operand size and the current operating mode of the processor. The USE attribute of the current code segment determines the operand size: the 14-byte operand applies to a USE16 segment, and the 28-byte operand applies to a USE32 segment. Figures 6-6 through 6-8 show the environment layouts for both operand sizes in both real mode and protected mode. (In virtual-8086 mode, the real mode layout is used). Operation DEST � FPU environment; CW[0..5] � 111111B; Numeric Exceptions None Protected Mode Exceptions #GP(0) if the destination is in a nonwritable segment; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault; #NM if either EM or TS in CR0 is set; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to 0FFFFH; Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Notes FSTENV and FNSTENV do not store the environment until FPU activity is complete. Thus, the save environment reflects the state of the FPU after any previously decoded instruction has been run. The store environment instructions are often used by exception handlers because they provide access to the FPU error pointers. The environment is typically saved onto the memory stack. After saving the environment, FSTENV and FNSTENV sets all the exception masks in the FPU control word. This prevents floating-point errors from interrupting the exception handler. FSTENV checks for unmasked floating-point error conditions before storing the FPU environment; FNSTENV does not. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FSTSW/FNSTSW-Store Status Word
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9B DF /7 |FSTSW m16 |X|X|X|X|X|X|Store FPU status word to m16 after| | | | | | | | | |checking for unmasked FP error | | | | | | | | | |condition | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9B DF E0 |FSTSW AX | | |X|X|X|X|Store FPU status word to AX | | | | | | | | | |register after checking for | | | | | | | | | |unmasked FP error condition | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DF /7 |FNSTSW m16 |X|X|X|X|X|X|Store FPU status word to m16 | | | | | | | | | |without checking for unmasked FP | | | | | | | | | |error condition | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DF E0 |FNSTSW AX | | |X|X|X|X|Store FPU status word to AX | | | | | | | | | |register without checking for | | | | | | | | | |unmasked FP error condition | \------------------------------------------------------------------------------/
FSTSW and FNSTSW write the current value of the FPU status word to the specified destination, which can be either a two-byte location in memory or the AX register.
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9B DF /7 |FSTSW m16 |X|X|X|X|X|X|Store FPU status word to m16 after| | | | | | | | | |checking for unmasked FP error | | | | | | | | | |condition | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9B DF E0 |FSTSW AX | | |X|X|X|X|Store FPU status word to AX | | | | | | | | | |register after checking for | | | | | | | | | |unmasked FP error condition | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DF /7 |FNSTSW m16 |X|X|X|X|X|X|Store FPU status word to m16 | | | | | | | | | |without checking for unmasked FP | | | | | | | | | |error condition | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DF E0 |FNSTSW AX | | |X|X|X|X|Store FPU status word to AX | | | | | | | | | |register without checking for | | | | | | | | | |unmasked FP error condition | \------------------------------------------------------------------------------/ Description FSTSW and FNSTSW write the current value of the FPU status word to the specified destination, which can be either a two-byte location in memory or the AX register. Operation DEST � SW; Numeric Exceptions None Protected Mode Exceptions #GP(0) if the destination is in a nonwritable segment; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in SS segment; #PF(fault-code) for a page fault; #NM if either EM or TS in CR0 is set; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to 0FFFFH; Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Notes FSTSW checks for unmasked floating-point error conditions before storing the status word; FNSTSW does not. FSTSW and FNSTSW are used primarily in conditional branching (after a comparison, FPREM, FPREM1, or FXAM instruction). They can also be used to invoke exception handlers (by polling the exception bits) in environments that do not use interrupts. When FNSTSW AX is run, the AX register is updated before the processor runs any further instructions. The status stored is that from the completion of the prior ESC instruction. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FSUB/FSUBP/FISUB-Subtract
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D8 /4 |FSUB m32real |X|X|X|X|X|X|Replace ST with ST - m32real | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DC /4 |FSUB m64real |X|X|X|X|X|X|Replace ST with ST - m64real | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D8 E0+i |FSUB ST,ST(i) |X|X|X|X|X|X|Replace ST with ST - ST(i) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DC E8+i |FSUB ST(i),ST |X|X|X|X|X|X|Replace ST(i) with ST(i) - ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DE E8+i |FSUBP ST(i),ST |X|X|X|X|X|X|Replace ST(i) with ST - ST(i); pop| | | | | | | | | |ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DE E9 |FSUB |X|X|X|X|X|X|Replace ST(1) with ST - ST(1); pop| | | | | | | | | |ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DE /4 |FISUB m16int |X|X|X|X|X|X|Replace ST with ST - m16int | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DA /4 |FISUB m32int |X|X|X|X|X|X|Replace ST with ST - m32int | \------------------------------------------------------------------------------/
The subtraction instructions subtract the other operand from the stack top and return the difference to the destination.
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D8 /4 |FSUB m32real |X|X|X|X|X|X|Replace ST with ST - m32real | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DC /4 |FSUB m64real |X|X|X|X|X|X|Replace ST with ST - m64real | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D8 E0+i |FSUB ST,ST(i) |X|X|X|X|X|X|Replace ST with ST - ST(i) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DC E8+i |FSUB ST(i),ST |X|X|X|X|X|X|Replace ST(i) with ST(i) - ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DE E8+i |FSUBP ST(i),ST |X|X|X|X|X|X|Replace ST(i) with ST - ST(i); pop| | | | | | | | | |ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DE E9 |FSUB |X|X|X|X|X|X|Replace ST(1) with ST - ST(1); pop| | | | | | | | | |ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DE /4 |FISUB m16int |X|X|X|X|X|X|Replace ST with ST - m16int | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DA /4 |FISUB m32int |X|X|X|X|X|X|Replace ST with ST - m32int | \------------------------------------------------------------------------------/ Description The subtraction instructions subtract the other operand from the stack top and return the difference to the destination. Operation DEST � ST - Other Operand; IF instruction = FSUBP THEN pop ST FI; Numeric Exceptions P, U, O, D, I, IS. Protected Mode Exceptions #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in SS segment; #PF(fault- code) for a page fault; #NM if either EM or TS in CR0 is set; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to 0FFFFH; Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Notes If the source operand is in memory, it is automatically converted to the extended-real format. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FSUBR/FSUBRP/FISUBR-Reverse Subtract
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D8 /5 |FSUBR m32real |X|X|X|X|X|X|Replace ST with m32real - ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DC /5 |FSUBR m64real |X|X|X|X|X|X|Replace ST with m64real - ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D8 E8+i |FSUBR ST,ST(i) |X|X|X|X|X|X|Replace ST with ST(i) - ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DC E0+i |FSUBR ST(i),ST |X|X|X|X|X|X|Replace ST(i) with ST - ST(i) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DE E0+i |FSUBRP ST(i),ST |X|X|X|X|X|X|Replace ST(i) with ST - ST(i) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DE E1 |FSUBR |X|X|X|X|X|X|Replace ST(1) with ST - ST(1); pop| | | | | | | | | |ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DE /5 |FISUBR m16int |X|X|X|X|X|X|Replace ST with m16int - ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DA /5 |FISUBR m32int |X|X|X|X|X|X|Replace ST with m32int - ST | \------------------------------------------------------------------------------/
The reverse subtraction instructions subtract the stack top from the other operand and return the difference to the destination.
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D8 /5 |FSUBR m32real |X|X|X|X|X|X|Replace ST with m32real - ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DC /5 |FSUBR m64real |X|X|X|X|X|X|Replace ST with m64real - ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D8 E8+i |FSUBR ST,ST(i) |X|X|X|X|X|X|Replace ST with ST(i) - ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DC E0+i |FSUBR ST(i),ST |X|X|X|X|X|X|Replace ST(i) with ST - ST(i) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DE E0+i |FSUBRP ST(i),ST |X|X|X|X|X|X|Replace ST(i) with ST - ST(i) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DE E1 |FSUBR |X|X|X|X|X|X|Replace ST(1) with ST - ST(1); pop| | | | | | | | | |ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DE /5 |FISUBR m16int |X|X|X|X|X|X|Replace ST with m16int - ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DA /5 |FISUBR m32int |X|X|X|X|X|X|Replace ST with m32int - ST | \------------------------------------------------------------------------------/ Description The reverse subtraction instructions subtract the stack top from the other operand and return the difference to the destination. Operation DEST � Other Operand - ST; IF instruction = FSUBRP THEN pop ST FI; Numeric Exceptions P, U, O, D, I, IS. Protected Mode Exceptions #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in SS segment; #PF(fault- code) for a page fault; #NM if either EM or TS in CR0 is set; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to 0FFFFH; Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Notes If the source operand is in memory, it is automatically converted to the extended-real format. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FTST-Test
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 E4 |FTST |X|X|X|X|X|X|Compare ST with 0.0 | \------------------------------------------------------------------------------/
The test instruction compares the stack top to 0.0. Following the instruction, the condition codes reflect the result of the comparison.
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 E4 |FTST |X|X|X|X|X|X|Compare ST with 0.0 | \------------------------------------------------------------------------------/ Description The test instruction compares the stack top to 0.0. Following the instruction, the condition codes reflect the result of the comparison. Operation CASE (relation of operands) OF Not comparable: C3, C2, C0 � 111; ST > SRC: C3, C2, C0 � 000; ST < SRC: C3, C2, C0 � 001; ST = SRC: C3, C2, C0 � 100; FPU Flags Affected /-------------------------\ |FPU FLAGS |EFLAGS | |------------+------------| |C0 |CF | |------------+------------| |C1 |(none) | |------------+------------| |C2 |PF | |------------+------------| |C3 |ZF | \-------------------------/ C1 as described in FPU Flags Affected; C0, C2, C3 as specified above. Numeric Exceptions D, I, IS. Protected Mode Exceptions #NM if either EM or TS in CR0 is set. Real Address Mode Exceptions Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions #NM if either EM or TS in CR0 is set. Notes If ST contains a NaN or an object of undefined format, or if a stack fault occurs, the invalid-operation exception is raised, and the condition bits are set to "unordered." The sign of zero is ignored, so that -0.0=+0.0. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FUCOM/FUCOMP/FUCOMPP-Unordered Compared Real
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DD E1 |FUCOM | | | |X|X|X|Compare ST with ST(1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DD E0+i |FUCOM ST(i) | | | |X|X|X|Compare ST with ST(i) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DD E9 |FUCOMP | | | |X|X|X|Compare ST with ST(1) and pop ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DD E8+i |FUCOMP ST(i) | | | |X|X|X|Compare ST with ST(i) and pop ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DA E9 |FUCOMPP | | | |X|X|X|Compare ST with ST(1) and pop ST | | | | | | | | | |twice | \------------------------------------------------------------------------------/
The unordered compare real instructions compare the stack top to the source , which must be a register. If no operand is encoded, ST is compared to ST( 1). Following the instruction, the condition codes reflect the relation between ST and the source operand.
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DD E1 |FUCOM | | | |X|X|X|Compare ST with ST(1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DD E0+i |FUCOM ST(i) | | | |X|X|X|Compare ST with ST(i) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DD E9 |FUCOMP | | | |X|X|X|Compare ST with ST(1) and pop ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DD E8+i |FUCOMP ST(i) | | | |X|X|X|Compare ST with ST(i) and pop ST | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |DA E9 |FUCOMPP | | | |X|X|X|Compare ST with ST(1) and pop ST | | | | | | | | | |twice | \------------------------------------------------------------------------------/ Description The unordered compare real instructions compare the stack top to the source , which must be a register. If no operand is encoded, ST is compared to ST( 1). Following the instruction, the condition codes reflect the relation between ST and the source operand. Operation CASE (relation of operands) OF Not comparable: C3, C2, C0 � 111; ST > SRC: C3, C2, C0 � 000; ST < SRC: C3, C2, C0 � 001; ST = SRC: C3, C2, C0 � 100; IF instruction = FUCOMP THEN pop ST; FI; IF instruction = FUCOMPP THEN pop ST; pop ST; FI; FPU Flags Affected /-------------------------\ |FPU FLAGS |EFLAGS | |------------+------------| |C0 |CF | |------------+------------| |C1 |(none) | |------------+------------| |C2 |PF | |------------+------------| |C3 |ZF | \-------------------------/ C1 as described in FPU Flags Affected; C0, C2, C3 as specified above. Numeric Exceptions D, I, IS. Protected Mode Exceptions #NM if either EM or TS in CR0 is set. Real Address Mode Exceptions Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions #NM if either EM or TS in CR0 is set. Notes If either operand is an SNaN or is in an undefined format, or if a stack fault occurs, the invalid-operation exception is raised, and the condition bits are set to "unordered." If either operand is a QNaN, the condition bits are set to "unordered." Unlike the ordinary compare instructions (FCOM, etc.), the unordered compare instructions do not raise the invalid-operation exception on account of a QNaN operand. The sign of zero is ignored, so that -0.0=+0.0. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FWAIT-Wait
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9B |FWAIT |X|X|X|X|X|X|Alias for WAIT | \------------------------------------------------------------------------------/
FWAIT causes the processor to check for pending unmasked numeric exceptions before proceeding.
Description FPU Flags Affected Notes Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9B |FWAIT |X|X|X|X|X|X|Alias for WAIT | \------------------------------------------------------------------------------/ Description FWAIT causes the processor to check for pending unmasked numeric exceptions before proceeding. Numeric Exceptions None Protected Mode Exceptions #NM if both MP and TS in CR0 are set. Real Address Mode Exceptions Interrupt 7 if both MP and TS in CR0 are set. Virtual 8086 Mode Exceptions #NM if both MP and TS in CR0 are set. Notes As its opcode shows, FWAIT is not actually an ESC instruction, but an alternate mnemonic for WAIT. Coding FWAIT after an ESC instruction ensures that any unmasked floating- point exceptions the instruction may cause are handled before the processor has a chance to modify the instruction's results. Refer to the Intel documentation for more information about when to use FWAIT. Related Information Description FPU Flags Affected Notes Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FXAM-Examine
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 E5 |FXAM |X|X|X|X|X|X|Report the type of object in the | | | | | | | | | |ST register | \------------------------------------------------------------------------------/
The examine instruction reports the type of object contained in the ST register by setting the FPU Flags.
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 E5 |FXAM |X|X|X|X|X|X|Report the type of object in the | | | | | | | | | |ST register | \------------------------------------------------------------------------------/ Description The examine instruction reports the type of object contained in the ST register by setting the FPU Flags. Operation C1 � sign bit of ST; (* 0 for positive, 1 for negative *) CASE (type of object in ST) OF Unsupported: C3, C2, C0 � 000; NaN: C3, C2, C0 � 001; Normal: C3, C2, C0 � 010; Infinity: C3, C2, C0 � 011; Zero: C3, C2, C0 � 100; Empty: C3, C2, C0 � 101; Denormal: C3, C2, C0 � 110; FPU Flags Affected /-------------------------\ |FPU FLAGS |EFLAGS | |------------+------------| |C0 |CF | |------------+------------| |C1 |(none) | |------------+------------| |C2 |PF | |------------+------------| |C3 |ZF | \-------------------------/ C0, C1, C2, C3 as shown above. Numeric Exceptions None Protected Mode Exceptions #NM if either EM or TS in CR0 is set. Real Address Mode Exceptions Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions #NM if either EM or TS in CR0 is set. Notes C1 bit represents the sign of ST(0) regardless of whether ST(0) is empty or full. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FXCH-Exchange Register Contents
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 C9 |FXCH |X|X|X|X|X|X|Exchange the contents of ST and | | | | | | | | | |ST(1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 C8+i |FXCH ST(i) |X|X|X|X|X|X|Exchange the contents of ST and | | | | | | | | | |ST(i) | \------------------------------------------------------------------------------/
FXCH swaps the contents of the destination and stack-top registers. If the destination is not coded explicitly, ST(1) is used.
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 C9 |FXCH |X|X|X|X|X|X|Exchange the contents of ST and | | | | | | | | | |ST(1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 C8+i |FXCH ST(i) |X|X|X|X|X|X|Exchange the contents of ST and | | | | | | | | | |ST(i) | \------------------------------------------------------------------------------/ Description FXCH swaps the contents of the destination and stack-top registers. If the destination is not coded explicitly, ST(1) is used. Operation TEMP � ST; ST � DEST; DEST � TEMP; Numeric Exceptions IS. Protected Mode Exceptions #NM if either EM or TS in CR0 is set. Real Address Mode Exceptions Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions #NM if either EM or TS in CR0 is set. Notes Many numeric instructions operate only on the stack top; FXCH provides a simple means for using these instructions on lower stack elements. For example, the following sequence takes the square root of the third register from the top (assuming that ST is nonempty): FXCH ST (3) FSQRT FXCH ST (3) FXCH can be paired with some floating point instructions (i.e., FADD, FSUB, FMUL, FLD, FCOM, FUCOM, FCHS, FTST, FABS, FDIV. This set also includes the FADDP, FSUBRP, etc., instructions). When paired, the FXCH gets run in parallel, and does not take any additional clocks. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FXTRACT-Extract Exponent and Significand
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 F4 |FXTRACT |X|X|X|X|X|X|Separate ST into its exponent and | | | | | | | | | |significand; replace ST with | | | | | | | | | |exponent then push significand | | | | | | | | | |onto FPU stack | \------------------------------------------------------------------------------/
FXTRACT splits the value in ST into its exponent and significand. The exponent replaces the original operand on the stack and the significand is pushed onto the stack. Following execution of FXTRACT, ST (the new stack top) contains the value of the original significand expressed as a real number: its sign is the same as the operand's, its exponent is 0 true (16, 383 or 3FFFH biased), and its significand is identical to the original operand's. ST(1) contains the value of the original operand's true ( unbiased) exponent expressed as a real number. To illustrate the operation of FXTRACT, assume that ST contains a number whose true exponent is +4 (i.e., its exponent field contains 4003H). After running FXTRACT, ST(1) will contain the real number +4.0; its sign will be positive, its exponent field will contain 4001H (+2 true) and its significand field will contain 1ë00...00B. In other words, the value in ST( 1) will be 1.0 * 2ý = 4. If ST contains an operand whose true exponent is - 7 (i.e., its exponent field contains 3FF8H), then FXTRACT will return an " exponent" of -7.0; after the instruction runs, ST(1)'s sign and exponent fields will contain C001H (negative sign, true exponent of 2), and its significand will be 1ë1100...00B. In other words, the value in ST(1) will be -1.75 * 2ý=-7.0. In both cases, following FXTRACT, ST's sign and significand fields will be the same as the original operand's, and its exponent field will contain 3FFFH (0 true).
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 F4 |FXTRACT |X|X|X|X|X|X|Separate ST into its exponent and | | | | | | | | | |significand; replace ST with | | | | | | | | | |exponent then push significand | | | | | | | | | |onto FPU stack | \------------------------------------------------------------------------------/ Description FXTRACT splits the value in ST into its exponent and significand. The exponent replaces the original operand on the stack and the significand is pushed onto the stack. Following execution of FXTRACT, ST (the new stack top) contains the value of the original significand expressed as a real number: its sign is the same as the operand's, its exponent is 0 true (16, 383 or 3FFFH biased), and its significand is identical to the original operand's. ST(1) contains the value of the original operand's true ( unbiased) exponent expressed as a real number. To illustrate the operation of FXTRACT, assume that ST contains a number whose true exponent is +4 (i.e., its exponent field contains 4003H). After running FXTRACT, ST(1) will contain the real number +4.0; its sign will be positive, its exponent field will contain 4001H (+2 true) and its significand field will contain 1ë00...00B. In other words, the value in ST( 1) will be 1.0 * 2ý = 4. If ST contains an operand whose true exponent is - 7 (i.e., its exponent field contains 3FF8H), then FXTRACT will return an " exponent" of -7.0; after the instruction runs, ST(1)'s sign and exponent fields will contain C001H (negative sign, true exponent of 2), and its significand will be 1ë1100...00B. In other words, the value in ST(1) will be -1.75 * 2ý=-7.0. In both cases, following FXTRACT, ST's sign and significand fields will be the same as the original operand's, and its exponent field will contain 3FFFH (0 true). Operation TEMP � significand of ST; ST � exponent of ST; Decrement FPU stack-top pointer; ST � TEMP; Numeric Exceptions Z, D, I, IS. Protected Mode Exceptions #NM if either EM or TS in CR0 is set. Real Address Mode Exceptions Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions #NM if either EM or TS in CR0 is set. Notes FXTRACT (extract exponent and significand) performs a superset of the IEEE- recommended logb(x) function. If the original operand is zero, FXTRACT leaves -ì in ST(1) (the exponent) while ST is assigned the value zero with a sign equal to that of the original operand. The zero-divide exception is raised in this case, as well . ST(7) must be empty to avoid the invalid-operation exception. FXTRACT is useful for power and range scaling operations. Both FXTRACT and the base 2 exponential instruction F2XM1 are needed to perform a general power operation. Converting numbers in extended-real format to decimal representations (e.g., for printing or displaying) requires not only FBSTP but also FXTRACT to allow scaling that does not overflow the range of the extended format. FXTRACT can also be useful for debugging, because it allows the exponent and significand parts of a real number to be examined separately. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FYL2X-Compute y * log2x
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 F1 |FYL2X |X|X|X|X|X|X|Replace ST with ST(1) * log2ST and| | | | | | | | | |pop ST | \------------------------------------------------------------------------------/
FYL2X computes the base-2 logarithm of ST, multiplies the logarithm by ST(1 ), and returns the resulting value to ST(1). It then pops ST. The operand in ST must not be negative or zero.
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 F1 |FYL2X |X|X|X|X|X|X|Replace ST with ST(1) * log2ST and| | | | | | | | | |pop ST | \------------------------------------------------------------------------------/ Description FYL2X computes the base-2 logarithm of ST, multiplies the logarithm by ST(1 ), and returns the resulting value to ST(1). It then pops ST. The operand in ST must not be negative or zero. Operation ST(1) � ST(1) * log2ST; pop ST; Numeric Exceptions P, U, O, Z, D, I, IS. Protected Mode Exceptions #NM if either EM or TS in CR0 is set. Real Address Mode Exceptions Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions #NM if either EM or TS in CR0 is set. Notes If the operand in ST is negative, the invalid-operation exception is raised . The FYL2X instruction is designed with a built-in multiplication to optimize the calculation of logarithms with arbitrary positive base: logbx = (log2b) -1 * log2x The instructions FLDL2T and FLDL2E load the constants log210 and log2e, respectively. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions FYL2XP1-Compute y * log2(x + 1)
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 F9 |FYL2XP1 |X|X|X|X|X|X|Replace ST(1) with ST(1) * log2 | | | | | | | | | |(ST+1.0) and pop ST | \------------------------------------------------------------------------------/
FYL2XP1 computes the base-2 logarithm of (ST+1.0), multiples the logarithm by ST(1), and returns the resulting value to ST(1). It then pops ST. The operand in ST must be in the range -(1-(û2 / 2)) ó ST ó û2 -1
Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions.*--------------------------------------------- -------------------------------- Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D9 F9 |FYL2XP1 |X|X|X|X|X|X|Replace ST(1) with ST(1) * log2 | | | | | | | | | |(ST+1.0) and pop ST | \------------------------------------------------------------------------------/ Description FYL2XP1 computes the base-2 logarithm of (ST+1.0), multiples the logarithm by ST(1), and returns the resulting value to ST(1). It then pops ST. The operand in ST must be in the range -(1-(û2 / 2)) ó ST ó û2 -1 Operation ST(1) � ST(1) * log2(ST+1.0); pop ST; Numeric Exceptions P, U, D, I, IS. Protected Mode Exceptions #NM if either EM or TS in CR0 is set. Real Address Mode Exceptions Interrupt 7 if either EM or TS in CR0 is set. Virtual 8086 Mode Exceptions #NM if either EM or TS in CR0 is set. Notes If the operand in ST is outside the acceptable range, the result of FYL2XP1 is undefined. The FYL2XP1 instruction provides improved accuracy over FYL2X when computing the logarithms of numbers very close to 1. When î is small, more significant digits can be retained by providing î as an argument to FYL2XP1 than by providing 1+î as an argument to FYL2X. Related Information Description FPU Flags Affected Notes Operation Numeric Exceptions Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions.*--------------------------------------------- -------------------------------- HLT-Halt
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F4 |HLT |X|X|X|X|X|X|Halt | \------------------------------------------------------------------------------/
The HLT instruction stops instruction processing and places the processor in a HALT state. An enabled interrupt, NMI, or a reset will resume execution. If an interrupt (including NMI) is used to resume execution after a HLT instruction, the saved CS:IP (or CS:EIP) value points to the instruction following the HLT instruction.
Description Flags Affected Operation Protected Mode Exceptions Protected Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F4 |HLT |X|X|X|X|X|X|Halt | \------------------------------------------------------------------------------/ Description The HLT instruction stops instruction processing and places the processor in a HALT state. An enabled interrupt, NMI, or a reset will resume execution. If an interrupt (including NMI) is used to resume execution after a HLT instruction, the saved CS:IP (or CS:EIP) value points to the instruction following the HLT instruction. Operation Enter Halt state; Protected Mode Exceptions The HLT instruction is a privileged instruction; #GP(0) if the current privilege level is not 0. Virtual 8086 Mode Exceptions #GP(0); the HLT instruction is a privileged instruction. Related Information Description Flags Affected Operation Protected Mode Exceptions Protected Mode Exceptions Virtual 8086 Mode Exceptions IDIV-Signed Divide
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F6 /7 |IDIV r/m8 |X|X|X|X|X|X|Signed divide AX (where AH must | | | | | | | | | |contain sign-extension of AL) by | | | | | | | | | |r/m byte (results: AL=Quotient, | | | | | | | | | |AH=Remainder) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F7 /7 |IDIV r/m16 |X|X|X|X|X|X|Signed divide DX:AX (where DX must| | | | | | | | | |contain sign-extension of AX) by | | | | | | | | | |r/m word (results: AX=Quotient, | | | | | | | | | |DX=Remainder) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F7 /7 |IDIV r/m32 | | | |X|X|X|Signed divide EDX:EAX (where EDX | | | | | | | | | |must contain sign-extension of | | | | | | | | | |EAX) by r/m dword (results: | | | | | | | | | |EAX=Quotient, EDX=Remainder) | \------------------------------------------------------------------------------/
The IDIV instruction performs a signed division. The dividend, quotient, and remainder are implicitly allocated to fixed registers. Only the divisor is given as an explicit r/m operand. The type of the divisor determines which registers to use as follows: /------------------------------------------------------\ | SIZE | DIVIDEND | DIVISOR | QUOTIENT | REMAINDER | |---------+-----------+---------+----------+-----------| | byte | AX | r/m8 | AL | AH | |---------+-----------+---------+----------+-----------| | word | DX:AX | r/m16 | AX | DX | |---------+-----------+---------+----------+-----------| | dword | EDX:EAX | r/m32 | EAX | EDX | \------------------------------------------------------/ If the resulting quotient is too large to fit in the destination, or if the divisor is 0, an Interrupt 0 is generated. Nonintegral quotients are truncated toward 0. The remainder has the same sign as the dividend and the absolute value of the remainder is always less than the absolute value of the divisor.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F6 /7 |IDIV r/m8 |X|X|X|X|X|X|Signed divide AX (where AH must | | | | | | | | | |contain sign-extension of AL) by | | | | | | | | | |r/m byte (results: AL=Quotient, | | | | | | | | | |AH=Remainder) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F7 /7 |IDIV r/m16 |X|X|X|X|X|X|Signed divide DX:AX (where DX must| | | | | | | | | |contain sign-extension of AX) by | | | | | | | | | |r/m word (results: AX=Quotient, | | | | | | | | | |DX=Remainder) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F7 /7 |IDIV r/m32 | | | |X|X|X|Signed divide EDX:EAX (where EDX | | | | | | | | | |must contain sign-extension of | | | | | | | | | |EAX) by r/m dword (results: | | | | | | | | | |EAX=Quotient, EDX=Remainder) | \------------------------------------------------------------------------------/ Description The IDIV instruction performs a signed division. The dividend, quotient, and remainder are implicitly allocated to fixed registers. Only the divisor is given as an explicit r/m operand. The type of the divisor determines which registers to use as follows: /------------------------------------------------------\ | SIZE | DIVIDEND | DIVISOR | QUOTIENT | REMAINDER | |---------+-----------+---------+----------+-----------| | byte | AX | r/m8 | AL | AH | |---------+-----------+---------+----------+-----------| | word | DX:AX | r/m16 | AX | DX | |---------+-----------+---------+----------+-----------| | dword | EDX:EAX | r/m32 | EAX | EDX | \------------------------------------------------------/ If the resulting quotient is too large to fit in the destination, or if the divisor is 0, an Interrupt 0 is generated. Nonintegral quotients are truncated toward 0. The remainder has the same sign as the dividend and the absolute value of the remainder is always less than the absolute value of the divisor. Operation temp � dividend / divisor; IF temp does not fit in quotient THEN Interrupt 0; ELSE quotient � temp; remainder � dividend MOD (r/m); FI; Note: Divisions are signed. The dividend must be sign-extended. The divisor is given by the r/m operand. The dividend, quotient, and remainder use implicit registers. Refer to the table under "Description." Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| |? | | |? |? |? |? |? | \-----------------------/ The OF, SF, ZF, AF, PF, and CF flags are undefined. Protected Mode Exceptions Interrupt 0 if the quotient is too large to fit in the designated register (AL or AX), or if the divisor is 0; #GP (0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 0 if the quotient is too large to fit in the designated register (AL or AX), or if the divisor is 0; Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions IMUL-Signed Multiply
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F6 /5 |IMUL r/m8 |X|X|X|X|X|X|AX � AL * r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F7 /5 |IMUL r/m16 |X|X|X|X|X|X|DX:AX � AX * r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F7 /5 |IMUL r/m32 | | | |X|X|X|EDX:EAX � EAX * r/m dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F AF /r |IMUL r16,r/m16 | | | |X|X|X|r16 � r16 * r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F AF /r |IMUL r32,r/m32 | | | |X|X|X|r32 � r32 * r/m dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |6B /r ib |IMUL r16,r/m16,imm8 | |X|X|X|X|X|r16 � r/m word * sign-extended | | | | | | | | | |immediate byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |6B /r ib |IMUL r32,r/m32,imm8 | | | |X|X|X|r32 � r/m dword * sign-extended | | | | | | | | | |immediate byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |6B /r ib |IMUL r16,imm8 | |X|X|X|X|X|r16 � r16 * sign-extended | | | | | | | | | |immediate byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |6B /r ib |IMUL r32,imm8 | | | |X|X|X|r32 � r32 * sign-extended | | | | | | | | | |immediate byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |69 /r iw |IMUL r16,r/m16,imm16| |X|X|X|X|X|r16 � r/m word * immediate word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |69 /r id |IMUL r32,r/m32,imm32| | | |X|X|X|r32 � r/m dword * immediate dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |69 /r iw |IMUL r16,imm16 | |X|X|X|X|X|r16 � r16 * immediate word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |69 /r id |IMUL r32,imm32 | | | |X|X|X|r32 � r32 * immediate dword | \------------------------------------------------------------------------------/
The IMUL instruction performs signed multiplication. Some forms of the instruction use implicit register operands. The operand combinations for all forms of the instruction are shown in the "Description" column above. The IMUL instruction clears the OF and CF flags under the following conditions (otherwise the CF and OF flags are set): /---------------------------------------------------------\ |INSTRUCTION FORM|CONDITION FOR CLEARING CR AND OF | |----------------+----------------------------------------| |r/m8 |AL = sign-extend of AL to 16-bits | |----------------+----------------------------------------| |r/m16 |AX = sign-extend of AX to 32-bits | |----------------+----------------------------------------| |r/m32 |EDX:EAX = sign-extend of EAX to 32-bits | |----------------+----------------------------------------| |r16,r/m16 |Result exactly fits within r16 | |----------------+----------------------------------------| |r32,r/m32 |Result exactly fits within r32 | |----------------+----------------------------------------| |r16,r/m16,imm16 |Result exactly fits within r16 | |----------------+----------------------------------------| |r32,r/m32,imm32 |Result exactly fits within r32 | \---------------------------------------------------------/
Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F6 /5 |IMUL r/m8 |X|X|X|X|X|X|AX � AL * r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F7 /5 |IMUL r/m16 |X|X|X|X|X|X|DX:AX � AX * r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F7 /5 |IMUL r/m32 | | | |X|X|X|EDX:EAX � EAX * r/m dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F AF /r |IMUL r16,r/m16 | | | |X|X|X|r16 � r16 * r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F AF /r |IMUL r32,r/m32 | | | |X|X|X|r32 � r32 * r/m dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |6B /r ib |IMUL r16,r/m16,imm8 | |X|X|X|X|X|r16 � r/m word * sign-extended | | | | | | | | | |immediate byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |6B /r ib |IMUL r32,r/m32,imm8 | | | |X|X|X|r32 � r/m dword * sign-extended | | | | | | | | | |immediate byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |6B /r ib |IMUL r16,imm8 | |X|X|X|X|X|r16 � r16 * sign-extended | | | | | | | | | |immediate byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |6B /r ib |IMUL r32,imm8 | | | |X|X|X|r32 � r32 * sign-extended | | | | | | | | | |immediate byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |69 /r iw |IMUL r16,r/m16,imm16| |X|X|X|X|X|r16 � r/m word * immediate word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |69 /r id |IMUL r32,r/m32,imm32| | | |X|X|X|r32 � r/m dword * immediate dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |69 /r iw |IMUL r16,imm16 | |X|X|X|X|X|r16 � r16 * immediate word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |69 /r id |IMUL r32,imm32 | | | |X|X|X|r32 � r32 * immediate dword | \------------------------------------------------------------------------------/ Description The IMUL instruction performs signed multiplication. Some forms of the instruction use implicit register operands. The operand combinations for all forms of the instruction are shown in the "Description" column above. The IMUL instruction clears the OF and CF flags under the following conditions (otherwise the CF and OF flags are set): /---------------------------------------------------------\ |INSTRUCTION FORM|CONDITION FOR CLEARING CR AND OF | |----------------+----------------------------------------| |r/m8 |AL = sign-extend of AL to 16-bits | |----------------+----------------------------------------| |r/m16 |AX = sign-extend of AX to 32-bits | |----------------+----------------------------------------| |r/m32 |EDX:EAX = sign-extend of EAX to 32-bits | |----------------+----------------------------------------| |r16,r/m16 |Result exactly fits within r16 | |----------------+----------------------------------------| |r32,r/m32 |Result exactly fits within r32 | |----------------+----------------------------------------| |r16,r/m16,imm16 |Result exactly fits within r16 | |----------------+----------------------------------------| |r32,r/m32,imm32 |Result exactly fits within r32 | \---------------------------------------------------------/ Operation result � multiplicand * multiplier; Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| |* | | |? |? |? |? |* | \-----------------------/ The OF and CF flags as described in the table in the "Description" section above; the SF, ZF, AF, and PF flags are undefined. Protected Mode Exceptions #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF( fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Notes When using the accumulator forms (IMUL r/m8, IMUL rm16, or IMUL r/m32), the result of the multiplication is available even if the overflow flag is set because the result is twice the size of the multiplicand and multiplier. This is large enough to handle any possible result. Related Information Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions IN-Input from Port
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E4 ib |IN AL,imm8 |X|X|X|X|X|X|Input byte from port imm8 into AL | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E5 ib |IN AX,imm8 |X|X|X|X|X|X|Input word from port imm8 into AX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E5 ib |IN EAX,imm8 | | | |X|X|X|Input dword from port imm8 into | | | | | | | | | |EAX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |EC |IN AL,DX |X|X|X|X|X|X|Input byte from port DX into AL | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |ED |IN AX,DX |X|X|X|X|X|X|Input word from port DX into AX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |ED |IN EAX,DX | | | |X|X|X|Input dword from port DX into EAX | \------------------------------------------------------------------------------/
The IN instruction transfers a data byte or data word from the port numbered by the second operand into the register (AL, AX, or EAX) specified by the first operand. Access any port from 0 to 65535 by placing the port number in the DX register and using an IN instruction with the DX register as the second parameter. These I/O instructions can be shortened by using an 8-bit port I/O in the instruction. The upper eight bits of the port address will be 0 when 8-bit port I/O is used.
Description Flags Affected Operation Protected Mode Exceptions Protected Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E4 ib |IN AL,imm8 |X|X|X|X|X|X|Input byte from port imm8 into AL | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E5 ib |IN AX,imm8 |X|X|X|X|X|X|Input word from port imm8 into AX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E5 ib |IN EAX,imm8 | | | |X|X|X|Input dword from port imm8 into | | | | | | | | | |EAX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |EC |IN AL,DX |X|X|X|X|X|X|Input byte from port DX into AL | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |ED |IN AX,DX |X|X|X|X|X|X|Input word from port DX into AX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |ED |IN EAX,DX | | | |X|X|X|Input dword from port DX into EAX | \------------------------------------------------------------------------------/ Description The IN instruction transfers a data byte or data word from the port numbered by the second operand into the register (AL, AX, or EAX) specified by the first operand. Access any port from 0 to 65535 by placing the port number in the DX register and using an IN instruction with the DX register as the second parameter. These I/O instructions can be shortened by using an 8-bit port I/O in the instruction. The upper eight bits of the port address will be 0 when 8-bit port I/O is used. Operation IF (PE = 1) AND ((VM = 1) OR (CPL>IOPL)) THEN (* Virtual 8086 mode, or protected mode with CPL>IOPL *) IF NOT I-O-Permission (SRC, width(SRC)) THEN #GP(0); FI; FI; DEST � [SRC]; (* Reads from I/O address space *) Protected Mode Exceptions #GP(0) if the current privilege level is larger (has less privilege) than the I/O privilege level and any of the corresponding I/O permission bits in TSS equals 1. Virtual 8086 Mode Exceptions #GP(0) fault if any of the corresponding I/O permission bits in TSS equals 1. Related Information Description Flags Affected Operation Protected Mode Exceptions Protected Mode Exceptions Virtual 8086 Mode Exceptions INC-Increment by 1
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FE /0 |INC r/m8 |X|X|X|X|X|X|Increment r/m byte by 1 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /0 |INC r/m16 |X|X|X|X|X|X|Increment r/m word by 1 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /0 |INC r/m32 | | | |X|X|X|Increment r/m dword by 1 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |40+rw |INC r16 |X|X|X|X|X|X|Increment word register by 1 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |40+rd |INC r32 | | | |X|X|X|Increment dword register by 1 | \------------------------------------------------------------------------------/
The INC instruction adds 1 to the operand. It does not change the CF flag. To affect the CF flag, use the ADD instruction with a second operand of 1.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FE /0 |INC r/m8 |X|X|X|X|X|X|Increment r/m byte by 1 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /0 |INC r/m16 |X|X|X|X|X|X|Increment r/m word by 1 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /0 |INC r/m32 | | | |X|X|X|Increment r/m dword by 1 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |40+rw |INC r16 |X|X|X|X|X|X|Increment word register by 1 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |40+rd |INC r32 | | | |X|X|X|Increment dword register by 1 | \------------------------------------------------------------------------------/ Description The INC instruction adds 1 to the operand. It does not change the CF flag. To affect the CF flag, use the ADD instruction with a second operand of 1. Operation DEST � DEST + 1; Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| |* | | |* |* |* |* | | \-----------------------/ The OF, SF, ZF, AF, and PF flags are set according to the result. Protected Mode Exceptions #GP(0) if the operand is in a nonwritable segment; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS (0) for an illegal address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions INS/INSB/INSW/INSD-Input from Port to String
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |6C |INS r/m8,DX | |X|X|X|X|X|Input byte from port DX into | | | | | | | | | |ES:[(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |6D |INS r/m16,DX | |X|X|X|X|X|Input word from port DX into | | | | | | | | | |ES:[(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |6D |INS r/m32,DX | | | |X|X|X|Input dword from port DX into | | | | | | | | | |ES:[(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |6C |INSB | |X|X|X|X|X|Input byte from port DX into | | | | | | | | | |ES:[(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |6D |INSW | |X|X|X|X|X|Input word from port DX into | | | | | | | | | |ES:[(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |6D |INSD | | | |X|X|X|Input dword from port DX into | | | | | | | | | |ES:[(E)DI] | \------------------------------------------------------------------------------/
The INS instruction transfers data from the input port numbered by the DX register to the memory byte or word at ES:dest-index. The memory operand must be addressable from the ES register; no segment override is possible. The destination register is the DI register if the address-size attribute of the instruction is 16-bits, or the EDI register if the address-size attribute is 32-bits. The INS instruction does not allow the specification of the port number as an immediate value. The port must be addressed through the DX register value. Load the correct value into the DX register before running the INS instruction. The destination address is determined by the contents of the destination index register. Load the correct index into the destination index register before running the INS instruction. After the transfer is made, the DI or EDI register advances automatically. If the DF flag is 0 (a CLD instruction was run), the DI or EDI register increments; if the DF flag is 1 (an STD instruction was run), the DI or EDI register decrements. The DI register increments or decrements by 1 if a byte is input, by 2 if a word is input, or by 4 if a doubleword is input. The INSB, INSW and INSD instructions are synonyms of the byte, word, and doubleword INS instructions. The INS instruction can be preceded by the REP prefix for block input of CX bytes or words. Refer to the REP instruction for details of this operation.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |6C |INS r/m8,DX | |X|X|X|X|X|Input byte from port DX into | | | | | | | | | |ES:[(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |6D |INS r/m16,DX | |X|X|X|X|X|Input word from port DX into | | | | | | | | | |ES:[(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |6D |INS r/m32,DX | | | |X|X|X|Input dword from port DX into | | | | | | | | | |ES:[(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |6C |INSB | |X|X|X|X|X|Input byte from port DX into | | | | | | | | | |ES:[(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |6D |INSW | |X|X|X|X|X|Input word from port DX into | | | | | | | | | |ES:[(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |6D |INSD | | | |X|X|X|Input dword from port DX into | | | | | | | | | |ES:[(E)DI] | \------------------------------------------------------------------------------/ Description The INS instruction transfers data from the input port numbered by the DX register to the memory byte or word at ES:dest-index. The memory operand must be addressable from the ES register; no segment override is possible. The destination register is the DI register if the address-size attribute of the instruction is 16-bits, or the EDI register if the address-size attribute is 32-bits. The INS instruction does not allow the specification of the port number as an immediate value. The port must be addressed through the DX register value. Load the correct value into the DX register before running the INS instruction. The destination address is determined by the contents of the destination index register. Load the correct index into the destination index register before running the INS instruction. After the transfer is made, the DI or EDI register advances automatically. If the DF flag is 0 (a CLD instruction was run), the DI or EDI register increments; if the DF flag is 1 (an STD instruction was run), the DI or EDI register decrements. The DI register increments or decrements by 1 if a byte is input, by 2 if a word is input, or by 4 if a doubleword is input. The INSB, INSW and INSD instructions are synonyms of the byte, word, and doubleword INS instructions. The INS instruction can be preceded by the REP prefix for block input of CX bytes or words. Refer to the REP instruction for details of this operation. Operation IF AddressSize = 16 THEN use DI for dest-index; ELSE (* AddressSize = 32 *) use EDI for dest-index; FI; IF (PE = 1) AND ((VM = 1) OR (CPL>IOPL)) THEN (* Virtual 8086 mode, or protected mode with CPL>IOPL *) IF NOT I-O-Permission (SRC, width(SRC)) THEN #GP(0); FI; FI; IF byte type of instruction THEN ES:[dest-index] � [DX]; (* Reads byte at DX from I/O address space *) IF DF = 0 THEN IncDec � 1 ELSE IncDec � -1; FI; FI; IF OperandSize = 16 THEN ES:[dest-index] � [DX]; (* Reads byte at DX from I/O address space *) IF DF = 0 THEN IncDec � 2 ELSE IncDec � -2; FI; FI; IF OperandSize = 32 THEN ES:[dest-index] � [DX]; (* Reads dword at DX from I/O address space *) IF DF = 0 THEN IncDec � 4 ELSE IncDec � -4; FI; FI; dest-index � dest-index + IncDec; Protected Mode Exceptions #GP(0) if the current privilege level is numerically greater than the I/O privilege level and any of the corresponding I/O permission bits in TSS equals 1; #GP(0) if the destination is in a nonwritable segment; #GP(0) for an illegal memory operand effective address in the ES, segment; #PF(fault- code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions #GP(0) fault if any of the corresponding I/O permission bits in TSS equals 1; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions INT/INTO-Call to Interrupt Procedure
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CC |INT 3 |X|X|X|X|X|X|Interrupt 3; Trap to debugger | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CC |INT 3 | | |X|X|X|X|Interrupt 3; Protected Mode, same | | | | | | | | | |privilege | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CC |INT 3 | | |X|X|X|X|Interrupt 3; Protected Mode, more | | | | | | | | | |privilege | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CC |INT 3 | | | |X|X|X|Interrupt 3; from V86 mode to PL 0| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CC |INT 3 | | |X|X|X|X|Interrupt 3; Protected Mode, via | | | | | | | | | |task gate | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CC ib |INT imm8 |X|X|X|X|X|X|Interrupt numbered by immediate | | | | | | | | | |byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CD ib |INT imm8 | | |X|X|X|X|Interrupt imm8; Protected Mode, | | | | | | | | | |same privilege | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CD ib |INT imm8 | | |X|X|X|X|Interrupt imm8; Protected Mode, | | | | | | | | | |more privilege | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CD ib |INT imm8 | | | |X|X|X|Interrupt imm8; from V86 mode to | | | | | | | | | |PL 0 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CD ib |INT imm8 | | |X|X|X|X|Interrupt imm8; Protected Mode, | | | | | | | | | |via task gate | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CE |INTO |X|X|X|X|X|X|Interrupt 4 if Overflow flag is 1 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CE |INTO | | |X|X|X|X|Interrupt 4 if Overflow flag is 1;| | | | | | | | | |Protected Mode, same privilege | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CE |INTO | | |X|X|X|X|Interrupt 4 if Overflow flag is 1;| | | | | | | | | |Protected Mode, more privilege | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CE |INTO | | | |X|X|X|Interrupt 4 if Overflow flag is 1;| | | | | | | | | |from V86 mode to PL 0 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CE |INTO | | |X|X|X|X|Interrupt 4 if Overflow flag is 1;| | | | | | | | | |Protected Mode, via task gate | \------------------------------------------------------------------------------/
The INT n instruction generates a call to an interrupt handler. The immediate operand, from 0 to 255, gives the index number into the Interrupt Descriptor Table (IDT) of the interrupt routine to be called. In protected mode, the IDT consists of an array of eight-byte descriptors; the descriptor for the interrupt invoked must indicate an interrupt, trap, or task gate. In real-address mode, the IDT is an array of four byte-long pointers. In protected and real-address modes, the base linear address of the IDT is defined by the contents of the IDTR. The initial value of IDTR is zero upon reset into real-address mode. When the processor is running in virtual-8086 mode (VM=1), the IOPL determines whether the INT n causes a general protection exception (IOPL<3) or runs a protected mode interrupt to privilege level 0. The interrupt gate 's DPL must be set to three and the target CPL of the interrupt service routine must be zero to run the protected mode interrupt to privilege level 0. The INTO conditional software instruction is identical to the INT n interrupt instruction except that the interrupt number is implicitly 4, and the interrupt is made only if the overflow flag is set. The first 32 interrupts are reserved by Intel for system use. Some of these interrupts are used for internally generated exceptions. The INT n instruction generally behaves like a far call except that the flags register is pushed onto the stack before the return address. Interrupt procedures return via the IRET instruction, which pops the flags and return address from the stack. In Real Address Mode, the INT n instruction pushes the flags, the CS register, and the return IP onto the stack, in that order, then jumps to the long pointer indexed by the interrupt number.
Decision Table Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CC |INT 3 |X|X|X|X|X|X|Interrupt 3; Trap to debugger | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CC |INT 3 | | |X|X|X|X|Interrupt 3; Protected Mode, same | | | | | | | | | |privilege | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CC |INT 3 | | |X|X|X|X|Interrupt 3; Protected Mode, more | | | | | | | | | |privilege | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CC |INT 3 | | | |X|X|X|Interrupt 3; from V86 mode to PL 0| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CC |INT 3 | | |X|X|X|X|Interrupt 3; Protected Mode, via | | | | | | | | | |task gate | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CC ib |INT imm8 |X|X|X|X|X|X|Interrupt numbered by immediate | | | | | | | | | |byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CD ib |INT imm8 | | |X|X|X|X|Interrupt imm8; Protected Mode, | | | | | | | | | |same privilege | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CD ib |INT imm8 | | |X|X|X|X|Interrupt imm8; Protected Mode, | | | | | | | | | |more privilege | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CD ib |INT imm8 | | | |X|X|X|Interrupt imm8; from V86 mode to | | | | | | | | | |PL 0 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CD ib |INT imm8 | | |X|X|X|X|Interrupt imm8; Protected Mode, | | | | | | | | | |via task gate | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CE |INTO |X|X|X|X|X|X|Interrupt 4 if Overflow flag is 1 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CE |INTO | | |X|X|X|X|Interrupt 4 if Overflow flag is 1;| | | | | | | | | |Protected Mode, same privilege | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CE |INTO | | |X|X|X|X|Interrupt 4 if Overflow flag is 1;| | | | | | | | | |Protected Mode, more privilege | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CE |INTO | | | |X|X|X|Interrupt 4 if Overflow flag is 1;| | | | | | | | | |from V86 mode to PL 0 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CE |INTO | | |X|X|X|X|Interrupt 4 if Overflow flag is 1;| | | | | | | | | |Protected Mode, via task gate | \------------------------------------------------------------------------------/ Description The INT n instruction generates a call to an interrupt handler. The immediate operand, from 0 to 255, gives the index number into the Interrupt Descriptor Table (IDT) of the interrupt routine to be called. In protected mode, the IDT consists of an array of eight-byte descriptors; the descriptor for the interrupt invoked must indicate an interrupt, trap, or task gate. In real-address mode, the IDT is an array of four byte-long pointers. In protected and real-address modes, the base linear address of the IDT is defined by the contents of the IDTR. The initial value of IDTR is zero upon reset into real-address mode. When the processor is running in virtual-8086 mode (VM=1), the IOPL determines whether the INT n causes a general protection exception (IOPL<3) or runs a protected mode interrupt to privilege level 0. The interrupt gate 's DPL must be set to three and the target CPL of the interrupt service routine must be zero to run the protected mode interrupt to privilege level 0. The INTO conditional software instruction is identical to the INT n interrupt instruction except that the interrupt number is implicitly 4, and the interrupt is made only if the overflow flag is set. The first 32 interrupts are reserved by Intel for system use. Some of these interrupts are used for internally generated exceptions. The INT n instruction generally behaves like a far call except that the flags register is pushed onto the stack before the return address. Interrupt procedures return via the IRET instruction, which pops the flags and return address from the stack. In Real Address Mode, the INT n instruction pushes the flags, the CS register, and the return IP onto the stack, in that order, then jumps to the long pointer indexed by the interrupt number. Operation Note: The following operational description applies not only to the above instructions but also to external interrupts and exceptions. IF PE = 0 THEN CALL REAL-ADDRESS-MODE; ELSE CALL PROTECTED-MODE; IF task gate THEN CALL TASK-GATE; ELSE CALL TRAP-OR-INT-GATE; (* PE=1, int/trap gate *) IF code segment is non-conforming AND DPL < CPL THEN IF VM=0 THEN CALL INT-TO-INNER-PRIV; (*PE=1,int/trap gate,DPL<CPL,VM=0*) ELSE CALL INT-FROM-V86-MODE; (* PE=1, int/trap gate, DPL<CPL, VM=1 *) FI; ELSE (* PE=1, int/trap gate, DPL ò CPL *) IF code segment is conforming OR code segment DPL = CPL THEN CALL INT-TO-SAME-PRIV; ELSE #GP(CS selector + EXT); (* PE=1, int/trap gate, DPL>CPL *) FI; FI; FI; FI; END; REAL-ADDRESS-MODE PROC Push (FLAGS); IF � 0; (* Clear interrupt flag *) TF � 0; (* Clear trap flag *) Push(CS); Push(IP); (* No error codes are pushed *) CS � IDT[Interrupt number * 4].selector; IP � IDT[Interrupt number * 4].offset; (* Start processing in real address mode *) REAL-ADDRESS-MODE ENDPROC PROTECTED-MODE PROC Interrupt vector must be within IDT table limits, else #GP(vector number * 8+2+EXT); Descriptor AR byte must indicate interrupt gate, trap gate, or task gate, else #GP(vector number * 8+2+EXT); IF software interrupt (* i.e. caused by INT n, INT 3, or INTO *) THEN IF gate descriptor DPL<CPL THEN #GP(vector number * 8+2+EXT); (* PE=1, DPL<CPL, software interrupt *) FI; FI; Gate must be present, else #NP(vector number * 8+2+EXT); PROTECTED-MODE ENDPROC TRAP-OR-INT-GATE PROC Examine CS selector and descriptor given in the gate descriptor; Selector must be non-null, else #GP (EXT); Selector must be within its descriptor table limits ELSE #GP(selector+EXT); Descriptor AR byte must indicate code segment ELSE #GP(selector + EXT); Segment must be present, else #NP(selector+EXT); TRAP-OR-INT-GATE ENDPROC INT-TO-INNER-PRIV PROC (* PE=1, DPL<CPL and non-conforming, (* PE=1, int/trap gate, DPL<CPL, VM=0 *) Check selector and descriptor for new stack in current TSS; Selector must be non-null, else #TS(EXT); Selector index must be within its descriptor table limits ELSE #TS(SS selector+EXT); Selector's RPL must equal DPL of code segment, else #TS(SS selector+EXT); Stack segment DPL must equal DPL of code segment, else #TS(SS selector+EXT); Descriptor must indicate writable data segment, else #TS(SS selector+EXT); Segment must be present, else #SS (SS selector+EXT); If 32-bit gate THEN New stack must have room for 20 bytes else #SS(0) ELSE New stack must have room for 10 bytes else #SS(0) FI; Instruction pointer must be within CS segment boundaries else #GP(0); Load new SS and eSP value from TSS; If 32-bit gate THEN CS:EIP � selector:offset from gate; ELSE CS:IP � selector:offset from gate; FI; Load CS descriptor into invisible portion of CS register; Load SS descriptor into invisible portion of SS register; IF 32-bit gate THEN Push (long pointer to old stack) (* 3 words padded to 4 *); Push (EFLAGS); Push (long pointer to return location) (* 3 words padded to 4 *); ELSE Push (long pointer to old stack) (* 2 words *); Push (FLAGS); Push (long pointer to return location) (* 2 words *); FI; Set CPL to new code segment DPL; Set RPL of CS to CPL; IF interrupt gate THEN IF � 0 (* interrupt flag to 0 (disable) *); FI; TF � 0; NT � 0; INT-FROM-INNER-PRIV ENDPROC INT-FROM-V86-MODE PROC Check selector and descriptor for new stack in current TSS; Selector must be non-null, else #TS(EXT); Selector index must be within its descriptor table limits ELSE #TS(SS selector+EXT); Selector's RPL must equal DPL of code segment, else #TS(SS selector+EXT); Stack segment DPL must equal DPL of code segment, else #TS(SS selector+EXT); Descriptor must indicate writable data segment, else #TS(SS selector+EXT); Segment must be present, else #SS(SS selector+EXT); IF 32-bit gate THEN New stack must have room for 20 bytes else #SS(0) ELSE New stack must have room for 10 bytes else #SS(0) FI; Instruction pointer must be within CS segment boundaries else #GP(0); IF IOPL < 3 THEN #GP(0); (*V86 monitor trap: PE=1,int/trap gate, DPL<CPL, VM=1, IOPL<3*) ELSE (* IOPL=3 *) IF GATE'S_DPL = 3 THEN IF TARGET'S_CPL <> 0 THEN #GP(0); ELSE TempEFlags � EFLAGS; VM � 0; TF � 0; IF service through Interrupt Gate THEN IF � 0; FI; TempSS � SS; TempESP � ESP; SS � TSS.SS0; (* Change to level 0 stack segment *) ESP � TSS.ESP0; (* Change to level 0 stack pointer *) Push(GS); (* padded to two words *) Push(FS); (* padded to two words *) Push(DS); (* padded to two words *) Push(ES); (* padded to two words *) GS � 0; (* segment registers nullified - invalid in protected mode *) FS � 0; DS � 0; ES � 0; Push(TempSS); (* Padded to two words *) Push(TempESP); Push(TempEFlags); Push(CS); (* Padded to two words *) Push(EIP); CS:EIP � selector:offset from interrupt gate; (* Starts processing of new routine in Protected Mode *) FI; ELSE (* GATE'S_DPL <> 3 *) #GP(0); FI; FI; INT-FROM-V86-MODE ENDPROC INT-TO-SAME-PRIV PROC (* PE=1, DPL=CPL or conforming segment *) IF 32-bit gate THEN Current stack limits must allow pushing 10 bytes, else #SS(0); ELSE Current stack limits must allow pushing 6 bytes, else #SS(0); FI; IF interrupt was caused by exception with error code THEN Stack limits must allow push to two more bytes; ELSE #SS(0); FI; Instruction pointer must be in CS limit, else #GP(0); IF 32-bit gate THEN Push (EFLAGS); Push (long pointer to return location); (* 3 words padded to 4 *) CS:EIP � selector:offset from gate; ELSE (* 16-bit gate *) Push (FLAGS); Push (long pointer to return location); (* 2 words *) CS:IP � selector:offset from gate; FI; Load CS descriptor into invisible portion of CS register; Set the RPL field of CS to CPL; Push (error code); (* if any *) IF interrupt gate THEN IF � 0; FI; TF � 0; NT � 0; INT-TO-SAME-PRIV ENDPROC TASK-GATE PROC (* PE=1, task gate *) Examine selector to TSS, given in task gate descriptor; Must specify global in the local/global bit, else #TS(TSS selector); Index must be within GDT limits, else #TS(TSS selector); AR byte must specify available TSS (bottom bits 00001); else #TS(TSS selector); TSS must be present, else #NP(TSS selector); SWITCH-TASKS with nesting to TSS; IF interrupt was caused by fault with error code THEN Stack limits must allow push of two more bytes, else #SS(0); Push error code onto stack; FI; Instruction pointer must be in CS limit, else #GP(0); TASK-GATE ENDPROC Decision Table The following decision table indicates which action in the lower portion of the table is taken given the conditions in the upper portion of the table. Each Y in the lower section of the decision table represents a procedure defined above in the Operation section for this instruction (except #GP(0)) and the number following the Y indicates the order in which the procedure is run. /--------------------------------------------------------------------------------\ |PE |0 |1 |1 |1 |1 |1 |1 |1 | |------------------------+------+------+------+------+------+------+------+------| |VM |- |- |- |- |- |0 |1 |1 | |------------------------+------+------+------+------+------+------+------+------| |IOPL |- |- |- |- |- |- |<3 |=3 | |------------------------+------+------+------+------+------+------+------+------| |DPL/CPL RELATIONSHIP |- |DPL < |- |DPL > |DPL = |DPL < |- |- | | | |CPL | |CPL |CPL or|CPL & | | | | | | | | |C |NC | | | |------------------------+------+------+------+------+------+------+------+------| |INTERRUPT TYPE |- |S/W |- |- |- |- |- |- | |------------------------+------+------+------+------+------+------+------+------| |GATE TYPE |- |- |Task |Trap |Trap |Trap |Trap |Trap | | | | | |or Int|or Int|or Int|or Int|or Int| |------------------------+------+------+------+------+------+------+------+------| |REAL-ADDRESS-MODE |Y | | | | | | | | |------------------------+------+------+------+------+------+------+------+------| |PROTECTED-MODE | |Y1 |Y1 |Y1 |Y1 |Y1 |Y1 |Y1 | |------------------------+------+------+------+------+------+------+------+------| |TRAP-OR-INT-GATE | | | |Y2 |Y2 |Y2 |Y2 |Y2 | |------------------------+------+------+------+------+------+------+------+------| |INT-TO-INNER-PRIV | | | | | |Y3 | | | |------------------------+------+------+------+------+------+------+------+------| |INT-TO-SAME-PRIV | | | | |Y3 | | | | |------------------------+------+------+------+------+------+------+------+------| |INT-FROM-V86-MODE | | | | | | | |Y3 | |------------------------+------+------+------+------+------+------+------+------| |TASK-GATE | | |Y2 | | | | | | |------------------------+------+------+------+------+------+------+------+------| |#GP | |Y2 | |Y3 | | |Y3 | | \--------------------------------------------------------------------------------/ Notes: - Don't Care Yx Yes, Action Taken, x = the order of processing Blank Action Not Taken Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| | | |0 | | | | | | \-----------------------/ None Protected Mode Exceptions #GP, #NP, #SS, and #TS as indicated under "Operation" above. Real Address Mode Exceptions None; if the SP or ESP register is 1, 3, or 5 before running the INT or INTO instruction, the processor will shut down due to insufficient stack space. Virtual 8086 Mode Exceptions #GP(0) fault if IOPL is less than 3, for the INT n instruction only, to permit emulation; Interrupt 3 (0CCH) generates a breakpoint exception; the INTO instruction generates an overflow exception if the OF flag is set. Related Information Decision Table Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions INVD-Invalidate Cache
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 08 |INVD | | | | |X|X|Invalidate entire cache | \------------------------------------------------------------------------------/
The internal cache is invalidated, and a special-function bus cycle is issued which indicates that external caches should also be invalidated. Data held in write-back external caches is not instructed to be written back.
Description Flags Affected Notes Operation Protected Mode Exceptions Protected Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 08 |INVD | | | | |X|X|Invalidate entire cache | \------------------------------------------------------------------------------/ Description The internal cache is invalidated, and a special-function bus cycle is issued which indicates that external caches should also be invalidated. Data held in write-back external caches is not instructed to be written back. Operation INVALIDATE INTERNAL CACHE SIGNAL EXTERNAL CACHE TO INVALIDATE Protected Mode Exceptions The INVD instruction is a privileged instruction; #GP(0) if the current privilege level is not 0. Virtual 8086 Mode Exceptions #GP(0); the INVD instruction is a privileged instruction. Notes INVD should be used with care. It does not write back modified cache lines; therefore, it can cause the data cache to become inconsistent with other memories in the system. Unless there is a specific requirement or benefit to invalidate a cache without writing back the modified lines (i.e., testing or fault recovery where cache coherency with main memory is not a concern), software should use the WBINVD instruction. This instruction is implementation-dependent; its function may be implemented differently on future Intel processors. This instruction does not wait for the external cache to complete its invalidation before the processor proceeds. It is the responsibility of hardware to respond to the external cache invalidation indication. This instruction is not supported on Intel386 processors. See the Intel documentation for CPUID detection at runtime. See the WBINVD description to write back dirty data to memory. See the Intel documentation for information on disabling the cache. Related Information Description Flags Affected Notes Operation Protected Mode Exceptions Protected Mode Exceptions Virtual 8086 Mode Exceptions INVLPG-Invalidate TLB Entry
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 01 /7 |INVLPG m | | | | |X|X|Invalidate TLB entry | \------------------------------------------------------------------------------/
The INVLPG instruction is used to ensure there are no invalid entries in the TLB, the cache used for page table entries. If the TLB contains a valid entry, which maps the address of the memory operand, all of the relevant TLB entries are marked invalid.
Description Flags Affected Notes Operation Protected Mode Exceptions Protected Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 01 /7 |INVLPG m | | | | |X|X|Invalidate TLB entry | \------------------------------------------------------------------------------/ Description The INVLPG instruction is used to ensure there are no invalid entries in the TLB, the cache used for page table entries. If the TLB contains a valid entry, which maps the address of the memory operand, all of the relevant TLB entries are marked invalid. Operation INVALIDATE RELEVANT TLB ENTRY(S) Protected Mode Exceptions The INVLPG instruction is a privileged instruction; #GP(0) if the current privilege level is not 0. An invalid-opcode exception is generated when used with a register operand. Virtual 8086 Mode Exceptions An invalid-opcode exception is generated when used with a register operand. #GP(0); the INVLPG instruction is a privileged instruction. Notes This instruction is not supported on Intel386 processors. See the Intel documentation for information on detecting the processor type at runtime. See the Intel documentation for information on disabling the cache. Related Information Description Flags Affected Notes Operation Protected Mode Exceptions Protected Mode Exceptions Virtual 8086 Mode Exceptions IRET/IRETD-Interrupt Return
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CF |IRET |X|X|X|X|X|X|Interrupt return (far return and | | | | | | | | | |pop flags) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CF |IRET | | |X|X|X|X|Interrupt return to lesser | | | | | | | | | |privilege | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CF |IRET | | |X|X|X|X|Interrupt return, different task | | | | | | | | | |(NT=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CF |IRET | | | |X|X|X|Interrupt return from Real or V86 | | | | | | | | | |mode | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CF |IRETD | | | |X|X|X|Interrupt return (far return and | | | | | | | | | |pop flags) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CF |IRETD | | | |X|X|X|Interrupt return to lesser | | | | | | | | | |privilege | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CF |IRETD | | | |X|X|X|Interrupt return, different task | | | | | | | | | |(NT=1) | \------------------------------------------------------------------------------/
In Real Address Mode, the IRET instruction pops the instruction pointer, the CS register, and the flags register from the stack and resumes the interrupted routine. In Protected Mode, the action of the IRET instruction depends on the setting of the nested task flag (NT) bit in the flag register. When the new flag image is popped from the stack, the IOPL bits in the flag register are changed only when CPL equals 0. If the NT flag is cleared, the IRET instruction returns from an interrupt procedure without a task switch. The code returned to must be equally or less privileged than the interrupt routine (as indicated by the RPL bits of the CS selector popped from the stack). If the destination code is less privileged, the IRET instruction also pops the stack pointer and SS from the stack. If the NT flag is set, the IRET instruction reverses the operation of a CALL or INT that caused a task switch. The updated state of the task running the IRET instruction is saved in its task state segment. If the task is reentered later, the code that follows the IRET instruction is run.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CF |IRET |X|X|X|X|X|X|Interrupt return (far return and | | | | | | | | | |pop flags) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CF |IRET | | |X|X|X|X|Interrupt return to lesser | | | | | | | | | |privilege | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CF |IRET | | |X|X|X|X|Interrupt return, different task | | | | | | | | | |(NT=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CF |IRET | | | |X|X|X|Interrupt return from Real or V86 | | | | | | | | | |mode | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CF |IRETD | | | |X|X|X|Interrupt return (far return and | | | | | | | | | |pop flags) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CF |IRETD | | | |X|X|X|Interrupt return to lesser | | | | | | | | | |privilege | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CF |IRETD | | | |X|X|X|Interrupt return, different task | | | | | | | | | |(NT=1) | \------------------------------------------------------------------------------/ Description In Real Address Mode, the IRET instruction pops the instruction pointer, the CS register, and the flags register from the stack and resumes the interrupted routine. In Protected Mode, the action of the IRET instruction depends on the setting of the nested task flag (NT) bit in the flag register. When the new flag image is popped from the stack, the IOPL bits in the flag register are changed only when CPL equals 0. If the NT flag is cleared, the IRET instruction returns from an interrupt procedure without a task switch. The code returned to must be equally or less privileged than the interrupt routine (as indicated by the RPL bits of the CS selector popped from the stack). If the destination code is less privileged, the IRET instruction also pops the stack pointer and SS from the stack. If the NT flag is set, the IRET instruction reverses the operation of a CALL or INT that caused a task switch. The updated state of the task running the IRET instruction is saved in its task state segment. If the task is reentered later, the code that follows the IRET instruction is run. Operation IF PE = 0 THEN GOTO REAL_ADDRESS_MODE:; ELSE GOTO PROTECTED_MODE; FI; REAL_ADDRESS_MODE; IF OperandSize = 32 (* Instruction = IRETD *) THEN EIP � Pop (); ELSE (* Instruction = IRET *) IP � Pop(); FI; CS � Pop (); IF OperandSize = 32 (* Instruction = IRETD *) THEN Pop(); EFLAGS � Pop(); ELSE (* Instruction = IRET *) FLAGS � Pop(); FI; END; PROTECTED_MODE: IF VM = 1 (* Virtual mode:PE=1, VM=1 *) THEN GOTO STACK_RETURN_FROM_V86; (* PE=1, VM=1 *) ELSE IF NT=1 THEN GOTO TASK_RETURN; (* PE=1, VM=1, NT=1 *) ELSE IF VM=1 in flags image on stack THEN GOTO STACK_RETURN_TO_V86; (* PE=1, VM=1 in flags inage *) ELSE GOTO STACK_RETURN; (* PE=1, VM=0 in flags image *) FI; FI; FI; STACK_RETURN_FROM_V86: IF IOPL=3 (* Virtual mode: PE=1, VM=1, IOPL=3 *) THEN IF OperandSize = 16 IP � Pop();(* 16-bit pops *) CS � Pop(); FLAGS �Pop(); ELSE (* OperandSize = 32 *) EIP � Pop(); (* 32-bit pops *) CS � Pop(); EFLAGS �Pop(); (*VM,IOPL,VIP,and VIF EFLAG bits are not modified by IRETD*) FI; ELSE #GP(0); (* trap to virtual-8086 monitor: PE=1, VM=1, IOPL<3 *) FI; END; STACK_RETURN_TO_V86: (* Interrupted procedure was in V86 mode: PE=1, VM=1 in flags image *) IF top 36 bytes of stack not within limits THEN #SS(0); FI; IF instruction pointer not within code segment limit THEN #GP(0); FI; EFLAGS � SS:[ESP + 8]; (* Sets VM in interrupted routine *) EIP � Pop(); CS � Pop(); (* CS behaves as in 8086, due to VM=1 *) throwaway � Pop(); (* pop away EFLAGS already read *) TempESP � Pop(); TempSS � Pop(); ES � Pop(); (* pop 2 words; throw away high-order word *) DS � Pop(); (* pop 2 words; throw away high-order word *) FS � Pop(); (* pop 2 words; throw away high-order word *) GS � Pop(); (* pop 2 words; throw away high-order word *) SS:ESP � TempSS:TempESP; (* Resume processing in Virtual 8086 mode *) END; TASK-RETURN: (* PE=1, VM=1, NT=1 *) Examine Back Link Selector in TSS addressed by the current task register: Must specify global in the local/global bit, else #TS(new TSS selector); Index must be within GDT limits, else #TS(new TSS selector); AR byte must specify TSS, else #TS(new TSS selector); New TSS must be busy, else #TS(new TSS selector); TSS must be present, else #NP(new TSS selector); SWITCH-TASKS without nesting to TSS specified by back link selector; Mark the task just abandoned as NOT BUSY; Instruction pointer must be within code segment limit ELSE #GP(0); END; STACK-RETURN: (* PE=1, VM=0 in flags image *) IF OperandSize=32 THEN Third word on stack must be within stack limits, else #SS(0); ELSE Second word on stack must be within stack limits, else #SS(0); FI; Return CS selector RPL must be ò CPL, else #GP(Return selector); IF return selector RPL = CPL THEN GOTO RETURN-SAME-LEVEL; ELSE GOTO RETURN-OTHER-LEVEL; FI; RETURN-SAME-LEVEL: (* PE=1, VM=0 in flags image, RPL=CPL *) IF OperandSize=32 THEN Top 12 bytes on stack must be within limits, else #SS(0); Return CS selector (at eSP+4) must be non-null, else #GP(0); ELSE Top 6 bytes on stack must be within limits, else #SS(0); Return CS selector (at eSP+2) must be non-null, else #GP(0); FI; Selector index must be within its descriptor table limits, else #GP (Return selector); AR byte must indicate code segment, else #GP(Return selector); IF non-conforming THEN code segment DPL must = CPL; ELSE #GP(Return selector); (* PE=1, VM=0 in flags image, RPL=CPL,non-conforming,DPL<> CPL *) FI; IF conforming THEN IF DPL>CPL #GP(Return selector); (* PE=1, VM=0 in flags image, RPL=CPL,conforming,DPL>CPL *) Segment must be present, else #NP(Return selector); Instruction pointer must be within code segment boundaries, else #GP(0); FI; IF OperandSize=32 put comments here THEN Load CS:EIP from stack; Load CS-register with new code segment descriptor; Load EFLAGS with third doubleword from stack; Increment eSP by 12; ELSE Load CS-register with new code segment descriptor; Load FLAGS with third word on stack; Increment eSP by 6; FI; END; RETURN-OUTER-LEVEL: IF OperandSize=32 THEN Top 20 bytes on stack must be within limits, else #SS(0); ELSE Top 10 bytes on stack must be within limits, else #SS(0); FI; Examine return CS selector and associated descriptor: Selector must be non-null, ELSE #GP(0); Selector index must be within its descriptor table limits; ELSE #GP(Return selector); AR byte must indicate code segment, else #GP(Return selector); IF non-conforming THEN code segment DPL must = CS selector RPL; ELSE #GP(Return selector); FI; IF conforming THEN code segment DPL must be > CPL; ELSE #GP(Return selector); FI; Segment must be present, else #NP(Return selector); Examine return SS selector and associated descriptor: Selector must be non-null, else #GP(0); Selector index must be within its descriptor table limits ELSE #GP(SS selector); Selector RPL must equal the RPL of the return CS selector ELSE #GP(SS selector); AR byte must indicate a writable data segment, else #GP(SS selector); Stack segment DPL must equal the RPL of the return CS selector ELSE #GP(SS selector); SS must be present, else #NP(SS selector); Instruction pointer must be within code segment limit ELSE #GP(0); IF OperandSize=32 THEN Load CS:EIP from stack; Load EFLAGS with values at (eSP+8); ELSE Load CS:IP from stack; Load FLAGS with values at (eSP+4); FI; Load SS:eSP from stack; Set CPL to the RPL of the return CS selector; Load the CS register with the CS descriptor; Load the SS register with the SS descriptor; FOR each of ES, FS, GS, and DS DO; IF the current value of the register is not valid for the outer level; THEN zero the register and clear the valid flag; FI; To be valid, the register setting must satisfy the following properties: Selector index must be within descriptor table limits; AR byte must indicate data or readable code segment; IF segment is data or non-conforming code, THEN DPL must be > CPL, or DPL must be < RPL; OD; END: Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| |* |* |* |* |* |* |* |* | \-----------------------/ All flags are affected; the flags register is popped from stack. Protected Mode Exceptions #GP, #NP, or #SS, as indicated under "Operation" above; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand being popped lies beyond address 0FFFFH. Virtual 8086 Mode Exceptions #GP(0) fault occurs if the I/O privilege level is less than 3, to permit emulation; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Jcc-Jump if Condition is Met
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |77 cb |JA rel8 |X|X|X|X|X|X|Jump short if above (CF=0 and | | | | | | | | | |ZF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |73 cb |JAE rel8 |X|X|X|X|X|X|Jump short if above or equal | | | | | | | | | |(CF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |72 cb |JB rel8 |X|X|X|X|X|X|Jump short if below (CF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |76 cb |JBE rel8 |X|X|X|X|X|X|Jump short if below or equal (CF=1| | | | | | | | | |or ZF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |72 cb |JC rel8 |X|X|X|X|X|X|Jump short if carry (CF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E3 cb |JCXZ rel8 |X|X|X|X|X|X|Jump short if CX register is 0 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E3 cb |JECXZ rel8 | | | |X|X|X|Jump short if ECX register is 0 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |74 cb |JE rel8 |X|X|X|X|X|X|Jump short if equal (ZF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |74 cb |JG rel8 |X|X|X|X|X|X|Jump short if zero (ZF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |7D cb |JGE rel8 |X|X|X|X|X|X|Jump short if greater or equal | | | | | | | | | |(SF=OF) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |7C cb |JL rel8 |X|X|X|X|X|X|Jump short if less (SF<>OF) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |7E cb |JLE rel8 |X|X|X|X|X|X|Jump short if less or equal (ZF=1 | | | | | | | | | |and SF<>OF) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |76 cb |JNA rel8 |X|X|X|X|X|X|Jump short if not above (CF=1 or | | | | | | | | | |ZF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |72 cb |JNAE rel8 |X|X|X|X|X|X|Jump short if not above or equal | | | | | | | | | |(CF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |73 cb |JNB rel8 |X|X|X|X|X|X|Jump short if not below (CF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |77 cb |JNBE rel8 |X|X|X|X|X|X|Jump short if not below or equal | | | | | | | | | |(CF=0 and ZF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |73 cb |JNC rel8 |X|X|X|X|X|X|Jump short if not carry (CF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |75 cb |JNE rel8 |X|X|X|X|X|X|Jump short if not equal (ZF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |7E cb |JNG rel8 |X|X|X|X|X|X|Jump short if not greater (ZF=1 or| | | | | | | | | |SF<>OF) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |7C cb |JNGE rel8 |X|X|X|X|X|X|Jump short if not greater or equal| | | | | | | | | |(SF<>OF) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |7D cb |JNL rel8 |X|X|X|X|X|X|Jump short if not less (SF=OF) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |7F cb |JNLE rel8 |X|X|X|X|X|X|Jump short if not less or equal | | | | | | | | | |(ZF=0 and SF=OF) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |71 cb |JNO rel8 |X|X|X|X|X|X|Jump short if not overflow (OF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |7B cb |JNP rel8 |X|X|X|X|X|X|Jump short if not parity (PF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |79 cb |JNS rel8 |X|X|X|X|X|X|Jump short if not sign (SF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |75 cb |JNZ rel8 |X|X|X|X|X|X|Jump short if not zero (ZF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |70 cb |JO rel8 |X|X|X|X|X|X|Jump short if overflow (OF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |7A cb |JP rel8 |X|X|X|X|X|X|Jump short if parity (PF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |7A cb |JPE rel8 |X|X|X|X|X|X|Jump short if parity even (PF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |7B cb |JPO rel8 |X|X|X|X|X|X|Jump short if parity odd (PF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |78 cb |JS rel8 |X|X|X|X|X|X|Jump short if sign (SF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |74 cb |JZ rel8 |X|X|X|X|X|X|Jump short if zero (ZF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 87 |JA rel16/rel32 | | | |X|X|X|Jump near if above (CF=0 and ZF=0)| |cw/cd | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 83 |JAE rel16/rel32 | | | |X|X|X|Jump near if above or equal (CF=0)| |cw/cd | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 82 |JB rel16/rel32 | | | |X|X|X|Jump near if below (CF=1) | |cw/cd | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 86 |JBE rel16/rel32 | | | |X|X|X|Jump near if below or equal (CF=1 | |cw/cd | | | | | | | |or ZF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 82 |JC rel16/rel32 | | | |X|X|X|Jump near if carry (CF=1) | |cw/cd | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 84 |JE rel16/rel32 | | | |X|X|X|Jump near if equal (ZF=1) | |cw/cd | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 8F |JG rel16/rel32 | | | |X|X|X|Jump near if zero (ZF=1) | |cw/cd | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 8D |JGE rel16/rel32 | | | |X|X|X|Jump near if greater or equal | |cw/cd | | | | | | | |(SF=OF) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 8C |JL rel16/rel32 | | | |X|X|X|Jump near if less (SF<>OF) | |cw/cd | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 8E |JLE rel16/rel32 | | | |X|X|X|Jump near if less or equal (ZF=1 | |cw/cd | | | | | | | |and SF<>OF) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 86 |JNA rel16/rel32 | | | |X|X|X|Jump near if not above (CF=1 or | |cw/cd | | | | | | | |ZF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 82 |JNAE rel16/rel32 | | | |X|X|X|Jump near if not above or equal | |cw/cd | | | | | | | |(CF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 83 |JNB rel16/rel32 | | | |X|X|X|Jump near if not below (CF=0) | |cw/cd | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 87 |JNBE rel16/rel32 | | | |X|X|X|Jump near if not below or equal | |cw/cd | | | | | | | |(CF=0 and ZF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 83 |JNC rel16/rel32 | | | |X|X|X|Jump near if not carry (CF=0) | |cw/cd | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 85 |JNE rel16/rel32 | | | |X|X|X|Jump near if not equal (ZF=0) | |cw/cd | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 8E |JNG rel16/rel32 | | | |X|X|X|Jump near if not greater (ZF=1 or | |cw/cd | | | | | | | |SF<>OF) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 8C |JNGE rel16/rel32 | | | |X|X|X|Jump near if not greater or equal | |cw/cd | | | | | | | |(SF<>OF) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 8D |JNL rel16/rel32 | | | |X|X|X|Jump near if not less (SF=OF) | |cw/cd | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 8F |JNLE rel16/rel32 | | | |X|X|X|Jump near if not less or equal | |cw/cd | | | | | | | |(ZF=0 and SF=OF) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 81 |JNO rel16/rel32 | | | |X|X|X|Jump near if not overflow (OF=0) | |cw/cd | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 8B |JNP rel16/rel32 | | | |X|X|X|Jump near if not parity (PF=0) | |cw/cd | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 89 |JNS rel16/rel32 | | | |X|X|X|Jump near if not sign (SF=0) | |cw/cd | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 85 |JNZ rel16/rel32 | | | |X|X|X|Jump near if not zero (ZF=0) | |cw/cd | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 80 |JO rel16/rel32 | | | |X|X|X|Jump near if overflow (OF=1) | |cw/cd | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 8A |JP rel16/rel32 | | | |X|X|X|Jump near if parity (PF=1) | |cw/cd | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 8A |JPE rel16/rel32 | | | |X|X|X|Jump near if parity even (PF=1) | |cw/cd | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 8B |JPO rel16/rel32 | | | |X|X|X|Jump near if parity odd (PF=0) | |cw/cd | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 88 |JS rel16/rel32 | | | |X|X|X|Jump near if sign (SF=1) | |cw/cd | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 84 |JZ rel16/rel32 | | | |X|X|X|Jump near if zero (ZF=1) | |cw/cd | | | | | | | | | \------------------------------------------------------------------------------/
Conditional jumps (except the JCXZ instruction) test the flags that have been set by a previous instruction. The conditions for each mnemonic are given in parentheses after each description above. The terms "less" and " greater" are used for comparisons of signed integers; "above" and "below" are used for unsigned integers. If the given condition is true, a jump is made to the location provided as the operand. Instruction coding is most efficient when the target for the conditional jump is in the current code segment and within -128 to +127 bytes of the next instruction's first byte. The jump can also target -32768 thru +32767 (segment size attribute 16) or -231 thru +231 - 1 (segment size attribute 32) relative to the next instruction's first byte. When the target for the conditional jump is in a different segment, use the opposite case of the jump instruction (i.e., the JE and JNE instructions), and then access the target with an unconditional far jump to the other segment. For example, you cannot code- JZ FARLABEL You must instead code- JNZ BEYOND JMP FARLABEL BEYOND: Because there can be several ways to interpret a particular state of the flags, ASM386 provides more than one mnemonic for most of the conditional jump opcodes. For example, if you compared two characters in AX and want to jump if they are equal, use the JE instructions; or, if you ANDed the AX register with a bit field mask and only want to jump if the result is 0, use the JZ instruction, a synonym for the JE instruction. The JCXZ instruction differs from other conditional jumps because it tests the contents of the CX or ECX register for 0, not the flags. The JCXZ instruction is useful at the beginning of a conditional loop that terminates with a conditional loop instruction (such as LOOPNE TARGET LABEL . The JCXZ instruction prevents entering the loop with the CX or ECX register equal to zero, which would cause the loop to run 64K or 23ý times instead of zero times.
Description Flags Affected Notes Operation Protected Mode Exceptions Protected Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |77 cb |JA rel8 |X|X|X|X|X|X|Jump short if above (CF=0 and | | | | | | | | | |ZF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |73 cb |JAE rel8 |X|X|X|X|X|X|Jump short if above or equal | | | | | | | | | |(CF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |72 cb |JB rel8 |X|X|X|X|X|X|Jump short if below (CF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |76 cb |JBE rel8 |X|X|X|X|X|X|Jump short if below or equal (CF=1| | | | | | | | | |or ZF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |72 cb |JC rel8 |X|X|X|X|X|X|Jump short if carry (CF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E3 cb |JCXZ rel8 |X|X|X|X|X|X|Jump short if CX register is 0 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E3 cb |JECXZ rel8 | | | |X|X|X|Jump short if ECX register is 0 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |74 cb |JE rel8 |X|X|X|X|X|X|Jump short if equal (ZF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |74 cb |JG rel8 |X|X|X|X|X|X|Jump short if zero (ZF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |7D cb |JGE rel8 |X|X|X|X|X|X|Jump short if greater or equal | | | | | | | | | |(SF=OF) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |7C cb |JL rel8 |X|X|X|X|X|X|Jump short if less (SF<>OF) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |7E cb |JLE rel8 |X|X|X|X|X|X|Jump short if less or equal (ZF=1 | | | | | | | | | |and SF<>OF) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |76 cb |JNA rel8 |X|X|X|X|X|X|Jump short if not above (CF=1 or | | | | | | | | | |ZF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |72 cb |JNAE rel8 |X|X|X|X|X|X|Jump short if not above or equal | | | | | | | | | |(CF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |73 cb |JNB rel8 |X|X|X|X|X|X|Jump short if not below (CF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |77 cb |JNBE rel8 |X|X|X|X|X|X|Jump short if not below or equal | | | | | | | | | |(CF=0 and ZF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |73 cb |JNC rel8 |X|X|X|X|X|X|Jump short if not carry (CF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |75 cb |JNE rel8 |X|X|X|X|X|X|Jump short if not equal (ZF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |7E cb |JNG rel8 |X|X|X|X|X|X|Jump short if not greater (ZF=1 or| | | | | | | | | |SF<>OF) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |7C cb |JNGE rel8 |X|X|X|X|X|X|Jump short if not greater or equal| | | | | | | | | |(SF<>OF) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |7D cb |JNL rel8 |X|X|X|X|X|X|Jump short if not less (SF=OF) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |7F cb |JNLE rel8 |X|X|X|X|X|X|Jump short if not less or equal | | | | | | | | | |(ZF=0 and SF=OF) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |71 cb |JNO rel8 |X|X|X|X|X|X|Jump short if not overflow (OF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |7B cb |JNP rel8 |X|X|X|X|X|X|Jump short if not parity (PF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |79 cb |JNS rel8 |X|X|X|X|X|X|Jump short if not sign (SF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |75 cb |JNZ rel8 |X|X|X|X|X|X|Jump short if not zero (ZF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |70 cb |JO rel8 |X|X|X|X|X|X|Jump short if overflow (OF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |7A cb |JP rel8 |X|X|X|X|X|X|Jump short if parity (PF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |7A cb |JPE rel8 |X|X|X|X|X|X|Jump short if parity even (PF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |7B cb |JPO rel8 |X|X|X|X|X|X|Jump short if parity odd (PF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |78 cb |JS rel8 |X|X|X|X|X|X|Jump short if sign (SF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |74 cb |JZ rel8 |X|X|X|X|X|X|Jump short if zero (ZF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 87 |JA rel16/rel32 | | | |X|X|X|Jump near if above (CF=0 and ZF=0)| |cw/cd | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 83 |JAE rel16/rel32 | | | |X|X|X|Jump near if above or equal (CF=0)| |cw/cd | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 82 |JB rel16/rel32 | | | |X|X|X|Jump near if below (CF=1) | |cw/cd | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 86 |JBE rel16/rel32 | | | |X|X|X|Jump near if below or equal (CF=1 | |cw/cd | | | | | | | |or ZF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 82 |JC rel16/rel32 | | | |X|X|X|Jump near if carry (CF=1) | |cw/cd | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 84 |JE rel16/rel32 | | | |X|X|X|Jump near if equal (ZF=1) | |cw/cd | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 8F |JG rel16/rel32 | | | |X|X|X|Jump near if zero (ZF=1) | |cw/cd | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 8D |JGE rel16/rel32 | | | |X|X|X|Jump near if greater or equal | |cw/cd | | | | | | | |(SF=OF) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 8C |JL rel16/rel32 | | | |X|X|X|Jump near if less (SF<>OF) | |cw/cd | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 8E |JLE rel16/rel32 | | | |X|X|X|Jump near if less or equal (ZF=1 | |cw/cd | | | | | | | |and SF<>OF) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 86 |JNA rel16/rel32 | | | |X|X|X|Jump near if not above (CF=1 or | |cw/cd | | | | | | | |ZF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 82 |JNAE rel16/rel32 | | | |X|X|X|Jump near if not above or equal | |cw/cd | | | | | | | |(CF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 83 |JNB rel16/rel32 | | | |X|X|X|Jump near if not below (CF=0) | |cw/cd | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 87 |JNBE rel16/rel32 | | | |X|X|X|Jump near if not below or equal | |cw/cd | | | | | | | |(CF=0 and ZF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 83 |JNC rel16/rel32 | | | |X|X|X|Jump near if not carry (CF=0) | |cw/cd | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 85 |JNE rel16/rel32 | | | |X|X|X|Jump near if not equal (ZF=0) | |cw/cd | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 8E |JNG rel16/rel32 | | | |X|X|X|Jump near if not greater (ZF=1 or | |cw/cd | | | | | | | |SF<>OF) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 8C |JNGE rel16/rel32 | | | |X|X|X|Jump near if not greater or equal | |cw/cd | | | | | | | |(SF<>OF) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 8D |JNL rel16/rel32 | | | |X|X|X|Jump near if not less (SF=OF) | |cw/cd | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 8F |JNLE rel16/rel32 | | | |X|X|X|Jump near if not less or equal | |cw/cd | | | | | | | |(ZF=0 and SF=OF) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 81 |JNO rel16/rel32 | | | |X|X|X|Jump near if not overflow (OF=0) | |cw/cd | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 8B |JNP rel16/rel32 | | | |X|X|X|Jump near if not parity (PF=0) | |cw/cd | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 89 |JNS rel16/rel32 | | | |X|X|X|Jump near if not sign (SF=0) | |cw/cd | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 85 |JNZ rel16/rel32 | | | |X|X|X|Jump near if not zero (ZF=0) | |cw/cd | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 80 |JO rel16/rel32 | | | |X|X|X|Jump near if overflow (OF=1) | |cw/cd | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 8A |JP rel16/rel32 | | | |X|X|X|Jump near if parity (PF=1) | |cw/cd | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 8A |JPE rel16/rel32 | | | |X|X|X|Jump near if parity even (PF=1) | |cw/cd | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 8B |JPO rel16/rel32 | | | |X|X|X|Jump near if parity odd (PF=0) | |cw/cd | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 88 |JS rel16/rel32 | | | |X|X|X|Jump near if sign (SF=1) | |cw/cd | | | | | | | | | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 84 |JZ rel16/rel32 | | | |X|X|X|Jump near if zero (ZF=1) | |cw/cd | | | | | | | | | \------------------------------------------------------------------------------/ Description Conditional jumps (except the JCXZ instruction) test the flags that have been set by a previous instruction. The conditions for each mnemonic are given in parentheses after each description above. The terms "less" and " greater" are used for comparisons of signed integers; "above" and "below" are used for unsigned integers. If the given condition is true, a jump is made to the location provided as the operand. Instruction coding is most efficient when the target for the conditional jump is in the current code segment and within -128 to +127 bytes of the next instruction's first byte. The jump can also target -32768 thru +32767 (segment size attribute 16) or -231 thru +231 - 1 (segment size attribute 32) relative to the next instruction's first byte. When the target for the conditional jump is in a different segment, use the opposite case of the jump instruction (i.e., the JE and JNE instructions), and then access the target with an unconditional far jump to the other segment. For example, you cannot code- JZ FARLABEL You must instead code- JNZ BEYOND JMP FARLABEL BEYOND: Because there can be several ways to interpret a particular state of the flags, ASM386 provides more than one mnemonic for most of the conditional jump opcodes. For example, if you compared two characters in AX and want to jump if they are equal, use the JE instructions; or, if you ANDed the AX register with a bit field mask and only want to jump if the result is 0, use the JZ instruction, a synonym for the JE instruction. The JCXZ instruction differs from other conditional jumps because it tests the contents of the CX or ECX register for 0, not the flags. The JCXZ instruction is useful at the beginning of a conditional loop that terminates with a conditional loop instruction (such as LOOPNE TARGET LABEL . The JCXZ instruction prevents entering the loop with the CX or ECX register equal to zero, which would cause the loop to run 64K or 23ý times instead of zero times. Operation IF condition THEN EIP � EIP + SignExtend(rel8/16/32); IF OperandSize = 16 THEN EIP � EIP AND 0000FFFFH; FI; FI; Protected Mode Exceptions #GP(0) if the offset jumped to is beyond the limits of the code segment. Notes The JCXZ instruction takes longer to run than a two-instruction sequence, which compares the count register to zero and jumps if the count is zero. All branches are converted into 16-byte code fetches regardless of jump address or cacheability. Related Information Description Flags Affected Notes Operation Protected Mode Exceptions Protected Mode Exceptions Virtual 8086 Mode Exceptions JMP-Jump
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |EB cb |JMP rel8 |X|X|X|X|X|X|Jump short, displacement relative | | | | | | | | | |to next instruction | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E9 cw |JMP rel16 |X|X|X|X|X|X|Jump near, displacement relative | | | | | | | | | |to next instruction | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /4 |JMP r/m16 |X|X|X|X|X|X|Jump near indirect | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |EA cd |JMP ptr16:16 |X|X|X|X|X|X|Jump intersegment, 4-byte | | | | | | | | | |immediate address | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |EA cd |JMP ptr16:16 | | |X|X|X|X|Jump to call gate, same privilege | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |EA cd |JMP ptr16:16 | | |X|X|X|X|Jump via task state segment | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |EA cd |JMP ptr16:16 | | |X|X|X|X|Jump via task gate | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /5 |JMP m16:16 |X|X|X|X|X|X|Jump intersegment, dword address | | | | | | | | | |at r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /5 |JMP m16:16 | | |X|X|X|X|Jump to call gate, same privilege | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /5 |JMP m16:16 | | |X|X|X|X|Jump via task state segment | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /5 |JMP m16:16 | | |X|X|X|X|Jump via task gate | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E9 cd |JMP rel32 | | | |X|X|X|Jump near, displacement relative | | | | | | | | | |to next instruction | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /4 |JMP r/m32 | | | |X|X|X|Jump near indirect | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |EA cp |JMP ptr16:32 | | | |X|X|X|Jump intersegment, 6-byte | | | | | | | | | |immediate address | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |EA cp |JMP ptr16:32 | | | |X|X|X|Jump to call gate, same privilege | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |EA cp |JMP ptr16:32 | | | |X|X|X|Jump via task state segment | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |EA cp |JMP ptr16:32 | | | |X|X|X|Jump via task gate | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /5 |JMP m16:32 | | | |X|X|X|Jump intersegment, fword address | | | | | | | | | |at r/m dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /5 |JMP m16:32 | | | |X|X|X|Jump to call gate, same privilege | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /5 |JMP m16:32 | | | |X|X|X|Jump via task state segment | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /5 |JMP m16:32 | | | |X|X|X|Jump via task gate | \------------------------------------------------------------------------------/
The JMP instruction transfers control to a different point in the instruction stream without recording return information. The action of the various forms of the instruction are shown below. Jumps with destinations of type r/m16, r/m32, rel16,, and rel32 are near jumps and do not involve changing the segment register value. The JMP rel16 and JMP rel32 forms of the instruction add an offset to the address of the instruction following the JMP to determine the destination. The rel16 form is used when the instruction's operand-size attribute is 16- bits (segment size attribute 16 only); rel32 is used when the operand-size attribute is 32-bits (segment size attribute 32 only). The result is stored in the 32-bit EIP register. With rel16, the upper 16-bits of the EIP register are cleared, which results in an offset whose value does not exceed 16-bits. The JMP r/m16 and JMP r/m32 forms specify a register or memory location from which the absolute offset from the procedure is fetched. The offset fetched from r/m is 32-bits for an operand-size attribute of 32-bits (r/m32 ), or 16-bits for an operand-size attribute of 16-bits (r/m16). The JMP ptr16:16 and ptr16:32 forms of the instruction use a four-byte or six-byte operand as a long pointer to the destination. The JMP m16:16 and m16:32 forms fetch the long pointer from the memory location specified ( indirection). In Real Address Mode or Virtual 8086 Mode, the long pointer provides 16-bits for the CS register and 16 or 32-bits for the EIP register (depending on the operand-size attribute). In Protected Mode, both long pointer forms consult the Access Rights (AR) byte in the descriptor indexed by the selector part of the long pointer. Depending on the value of the AR byte, the jump will perform one of the following types of control transfers : �A jump to a code segment at the same privilege level �A task switch For more information on protected mode control transfers, refer to the Intel documentation.
Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |EB cb |JMP rel8 |X|X|X|X|X|X|Jump short, displacement relative | | | | | | | | | |to next instruction | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E9 cw |JMP rel16 |X|X|X|X|X|X|Jump near, displacement relative | | | | | | | | | |to next instruction | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /4 |JMP r/m16 |X|X|X|X|X|X|Jump near indirect | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |EA cd |JMP ptr16:16 |X|X|X|X|X|X|Jump intersegment, 4-byte | | | | | | | | | |immediate address | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |EA cd |JMP ptr16:16 | | |X|X|X|X|Jump to call gate, same privilege | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |EA cd |JMP ptr16:16 | | |X|X|X|X|Jump via task state segment | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |EA cd |JMP ptr16:16 | | |X|X|X|X|Jump via task gate | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /5 |JMP m16:16 |X|X|X|X|X|X|Jump intersegment, dword address | | | | | | | | | |at r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /5 |JMP m16:16 | | |X|X|X|X|Jump to call gate, same privilege | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /5 |JMP m16:16 | | |X|X|X|X|Jump via task state segment | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /5 |JMP m16:16 | | |X|X|X|X|Jump via task gate | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E9 cd |JMP rel32 | | | |X|X|X|Jump near, displacement relative | | | | | | | | | |to next instruction | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /4 |JMP r/m32 | | | |X|X|X|Jump near indirect | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |EA cp |JMP ptr16:32 | | | |X|X|X|Jump intersegment, 6-byte | | | | | | | | | |immediate address | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |EA cp |JMP ptr16:32 | | | |X|X|X|Jump to call gate, same privilege | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |EA cp |JMP ptr16:32 | | | |X|X|X|Jump via task state segment | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |EA cp |JMP ptr16:32 | | | |X|X|X|Jump via task gate | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /5 |JMP m16:32 | | | |X|X|X|Jump intersegment, fword address | | | | | | | | | |at r/m dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /5 |JMP m16:32 | | | |X|X|X|Jump to call gate, same privilege | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /5 |JMP m16:32 | | | |X|X|X|Jump via task state segment | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /5 |JMP m16:32 | | | |X|X|X|Jump via task gate | \------------------------------------------------------------------------------/ Description The JMP instruction transfers control to a different point in the instruction stream without recording return information. The action of the various forms of the instruction are shown below. Jumps with destinations of type r/m16, r/m32, rel16,, and rel32 are near jumps and do not involve changing the segment register value. The JMP rel16 and JMP rel32 forms of the instruction add an offset to the address of the instruction following the JMP to determine the destination. The rel16 form is used when the instruction's operand-size attribute is 16- bits (segment size attribute 16 only); rel32 is used when the operand-size attribute is 32-bits (segment size attribute 32 only). The result is stored in the 32-bit EIP register. With rel16, the upper 16-bits of the EIP register are cleared, which results in an offset whose value does not exceed 16-bits. The JMP r/m16 and JMP r/m32 forms specify a register or memory location from which the absolute offset from the procedure is fetched. The offset fetched from r/m is 32-bits for an operand-size attribute of 32-bits (r/m32 ), or 16-bits for an operand-size attribute of 16-bits (r/m16). The JMP ptr16:16 and ptr16:32 forms of the instruction use a four-byte or six-byte operand as a long pointer to the destination. The JMP m16:16 and m16:32 forms fetch the long pointer from the memory location specified ( indirection). In Real Address Mode or Virtual 8086 Mode, the long pointer provides 16-bits for the CS register and 16 or 32-bits for the EIP register (depending on the operand-size attribute). In Protected Mode, both long pointer forms consult the Access Rights (AR) byte in the descriptor indexed by the selector part of the long pointer. Depending on the value of the AR byte, the jump will perform one of the following types of control transfers : �A jump to a code segment at the same privilege level �A task switch For more information on protected mode control transfers, refer to the Intel documentation. Operation IF instruction = relative JMP (* i.e. operand is rel8, rel16, or rel32 *) THEN EIP � EIP + rel18/16/32; IF OperandSize = 16 THEN EIP � EIP AND 0000FFFFH; FI; FI; IF instruction = near indirect JMP (* i.e. operand is r/m16 or r/m32 *) THEN IF OperandSize = 16 THEN EIP � [r/m16] AND 0000FFFFH; ELSE (* OperandSize = 32 *) EIP � [r/m32; FI; FI; IF (PE = 0 OR (PE = 1 AND VM = 1)) (* real mode or V86 mode *) AND instruction = far JMP (* i.e., operand type is m16:16, m16:32, ptr16:16, ptr16:32 *) THEN GOTO REAL-OR-V86-MODE; IF operand type = m16:16 or m16:32 THEN (* indirect *) IF OperandSize = 16 THEN CS:IP � [m16:16]; EIP � EIP AND 0000FFFFH; (* clear upper 16 bits *) ELSE (* OperandSize = 32 *) CS:EIP � [m16:32]; FI; FI; IF operand type = ptr16:16 or ptr16:32 THEN IF OperandSize = 16 THEN CS:IP � ptr16:16; EIP � EIP AND 0000FFFFH; (* clear upper 16 bits *) ELSE (* OperandSize = 32 *) CS:EIP � ptr16:32; FI; FI; FI; IF (PE = 1 AND VM = 0) (* Protected mode, not V86 mode *) AND instruction = far JMP THEN IF operand type = m16:16 or m16:32 THEN (* indirect *) check access of EA dword; #GP(0) or #SS(0) IF limit violation; FI; Destination selector is not null ELSE #GP(0) Destination selector index is within its descriptor table limits ELSE #GP(selector) Depending on AR byte of destination descriptor; GOTO CONFORMING-CODE-SEGMENT; GOTO NONCONFORMING-CODE-SEGMENT; GOTO CALL-GATE; GOTO TASK-GATE; GOTO TASK-STATE-SEGMENT; ELSE #GP(selector); (* illegal AR byte in descriptor *) FI; CONFORMING-CODE-SEGMENT: Descriptor DPL must be ó CPL ELSE #GP(selector); Segment must be present ELSE #NP(selector); Instruction pointer must be within code-segment limit ELSE #GP(0); IF OperandSize = 32 THEN Load CS:EIP from destination pointer; ELSE Load CS:IP from destination pointer; FI; Load CS register with new segment descriptor; NONCONFORMING-CODE-SEGMENT: RPL of destination selector must be ò CPL ELSE #GP(selector); Descriptor DPL must be = CPL ELSE #GP(selector); Segment must be present ELSE #NP(selector); Instruction pointer must be within code-segment limit ELSE #GP(0); IF OperandSize = 32 THEN Load CS:EIP from destination pointer; ELSE Load CS:IP from destination pointer; FI; Load CS register with new segment descriptor; Set RPL field of CS register to CPL; CALL-GATE: Descriptor DPL must be ò CPL ELSE #GP(gate selector); Descriptor DPL must be ò gate selector RPL ELSE #GP(gate selector); Gate must be present ELSE #NP(gate selector); Examine selector to code segment given in call gate descriptor: Selector must not be null ELSE #GP(0); Selector must be within its descriptor table limits ELSE #GP(CS selector); Descriptor AR byte must indicate code segment ELSE #GP(CS selector); IF non-conforming THEN code-segment descriptor DPL must = CPL ELSE #GP(CS selector); FI; IF conforming THEN code-segment descriptor DPL must be ó CPL; ELSE #GP(CS selector); Code segment must be present ELSE #NP(CS selector); Instruction pointer must be within code-segment limit ELSE #GP(0); IF OperandSize = 32 THEN Load CS:EIP from call gate; ELSE Load CS:IP from call gate; FI; Load CS register with new code-segment descriptor; Set RPL of CS to CPL TASK-GATE: Gate descriptor DPL must be ò CPL ELSE #GP(gate selector); Gate descriptor DPL must be ò gate selector RPL ELSE #GP(gate selector); Task Gate must be present ELSE #NP(gate selector); Examine selector to TSS, given in Task Gate descriptor: Must specify global in the local/global bit ELSE #GP(TSS selector); Index must be within GDT limits ELSE #GP(TSS selector); Descriptor AR byte must specify available TSS (bottom bits 00001); ELSE #GP(TSS selector); Task State Segment must be present ELSE #NP(TSS selector); SWITCH-TASKS (without nesting) to TSS; Instruction pointer must be within code-segment limit ELSE #GP(0); TASK-STATE-SEGMENT: TSS DPL must be ò CPL ELSE #GP(TSS selector); TSS DPL must be ò TSS selector RPL ELSE #GP(TSS selector); Descriptor AR byte must specify available TSS (bottom bits 00001) ELSE #GP(TSS selector); Task State Segment must be present ELSE #NP(TSS selector); SWITCH-TASKS (without nesting) to TSS; Instruction pointer must be within code-segment limit ELSE #GP(0); Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| | | | | | | | | | \-----------------------/ All if a task switch takes place; none if no task switch occurs. Protected Mode Exceptions Far jumps: #GP, #NP, #SS, and #TS, as indicated in the list above. Near direct jumps: #GP(0) if procedure location is beyond the code segment limits; #AC for unaligned memory reference if the current privilege level is 3. Near indirect jumps: #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments: #SS(0) for an illegal address in the SS segment; #GP if the indirect offset obtained is beyond the code segment limits; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would be outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as under Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Notes All branches are converted into 16-byte code fetches regardless of jump address or cacheability. Related Information Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions LAHF-Load Flags into AH Register
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9F |LAHF |X|X|X|X|X|X|AH � flags | | | | | | | | | |(SF,ZF,xx,AF,xx,PF,xx,CF) | \------------------------------------------------------------------------------/
The LAHF instruction transfers the low byte of the flags word to the AH register. The bits, from MSB to LSB, are sign, zero, indeterminate, auxiliary, carry, indeterminate, parity, indeterminate, and carry.
Description Flags Affected Operation Protected Mode Exceptions Protected Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9F |LAHF |X|X|X|X|X|X|AH � flags | | | | | | | | | |(SF,ZF,xx,AF,xx,PF,xx,CF) | \------------------------------------------------------------------------------/ Description The LAHF instruction transfers the low byte of the flags word to the AH register. The bits, from MSB to LSB, are sign, zero, indeterminate, auxiliary, carry, indeterminate, parity, indeterminate, and carry. Operation AH � SF:ZF:xx:AF:xx:PF:xx:CF; Related Information Description Flags Affected Operation Protected Mode Exceptions Protected Mode Exceptions Virtual 8086 Mode Exceptions LAR-Load Access Rights Byte
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 02 /r |LAR r16,r/m16 | | |X|X|X|X|r16 � r/m16 masked by FF00 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 02 /r |LAR r32,r/m32 | | | |X|X|X|r32 � r/m32 masked by 00F?FF00 | \------------------------------------------------------------------------------/
The LAR instruction stores a marked form of the second doubleword of the descriptor for the source selector if the selector is visible at the current privilege level (modified by the selector's RPL) and is a valid descriptor type within the descriptor limits. The destination register is loaded with the high-order doubleword of the descriptor masked by 00FxFF00, and the ZF flag is set. The x indicates that the four bits corresponding to the upper four bits of the limit are undefined in the value loaded by the LAR instruction. If the selector is invisible or of the wrong type, the ZF flag is cleared. If the 32-bit operand size is specified, the entire 32-bit value is loaded into the 32-bit destination register. If the 16-bit operand size is specified, the lower 16-bits of this value are stored in the 16-bit destination register. All code and data segment descriptors are valid for the LAR instruction. The valid special segment and gate descriptor types for the LAR instruction are given in the following table: /-------------------------------------------------\ | TYPE |NAME |VALID/INVALID | |------+--------------------------+---------------| | 0 |Invalid | Invalid | |------+--------------------------+---------------| | 1 |Available 16-bit TSS | Valid | |------+--------------------------+---------------| | 2 |LDT | Valid | |------+--------------------------+---------------| | 3 |Busy 16-bit TSS | Valid | |------+--------------------------+---------------| | 4 |16-bit call gate | Valid | |------+--------------------------+---------------| | 5 |16-bit/32-bit task gate | Valid | |------+--------------------------+---------------| | 6 |16-bit trap gate | Invalid | |------+--------------------------+---------------| | 7 |16-bit interrupt gate | Invalid | |------+--------------------------+---------------| | 8 |Invalid | Invalid | |------+--------------------------+---------------| | 9 |Available 32-bit TSS | Valid | |------+--------------------------+---------------| | A |Invalid | Invalid | |------+--------------------------+---------------| | B |Busy 32-bit TSS | Valid | |------+--------------------------+---------------| | C |32-bit call gate | Valid | |------+--------------------------+---------------| | D |Invalid | Invalid | |------+--------------------------+---------------| | E |32-bit trap gate | Invalid | |------+--------------------------+---------------| | F |32-bit interrupt gate | Invalid | \-------------------------------------------------/
Description Flags Affected Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 02 /r |LAR r16,r/m16 | | |X|X|X|X|r16 � r/m16 masked by FF00 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 02 /r |LAR r32,r/m32 | | | |X|X|X|r32 � r/m32 masked by 00F?FF00 | \------------------------------------------------------------------------------/ Description The LAR instruction stores a marked form of the second doubleword of the descriptor for the source selector if the selector is visible at the current privilege level (modified by the selector's RPL) and is a valid descriptor type within the descriptor limits. The destination register is loaded with the high-order doubleword of the descriptor masked by 00FxFF00, and the ZF flag is set. The x indicates that the four bits corresponding to the upper four bits of the limit are undefined in the value loaded by the LAR instruction. If the selector is invisible or of the wrong type, the ZF flag is cleared. If the 32-bit operand size is specified, the entire 32-bit value is loaded into the 32-bit destination register. If the 16-bit operand size is specified, the lower 16-bits of this value are stored in the 16-bit destination register. All code and data segment descriptors are valid for the LAR instruction. The valid special segment and gate descriptor types for the LAR instruction are given in the following table: /-------------------------------------------------\ | TYPE |NAME |VALID/INVALID | |------+--------------------------+---------------| | 0 |Invalid | Invalid | |------+--------------------------+---------------| | 1 |Available 16-bit TSS | Valid | |------+--------------------------+---------------| | 2 |LDT | Valid | |------+--------------------------+---------------| | 3 |Busy 16-bit TSS | Valid | |------+--------------------------+---------------| | 4 |16-bit call gate | Valid | |------+--------------------------+---------------| | 5 |16-bit/32-bit task gate | Valid | |------+--------------------------+---------------| | 6 |16-bit trap gate | Invalid | |------+--------------------------+---------------| | 7 |16-bit interrupt gate | Invalid | |------+--------------------------+---------------| | 8 |Invalid | Invalid | |------+--------------------------+---------------| | 9 |Available 32-bit TSS | Valid | |------+--------------------------+---------------| | A |Invalid | Invalid | |------+--------------------------+---------------| | B |Busy 32-bit TSS | Valid | |------+--------------------------+---------------| | C |32-bit call gate | Valid | |------+--------------------------+---------------| | D |Invalid | Invalid | |------+--------------------------+---------------| | E |32-bit trap gate | Invalid | |------+--------------------------+---------------| | F |32-bit interrupt gate | Invalid | \-------------------------------------------------/ Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| | | | | |* | | | | \-----------------------/ The ZF flag is set unless the selector is invisible or of the wrong type, in which case the ZF flag is cleared. Protected Mode Exceptions #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF( fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 6; the LAR instruction is unrecognized in Real Address Mode. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode. Related Information Description Flags Affected Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions LDS/LES/LFS/LGS/LSS-Load Full Pointer
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C5 /r |LDS r16,m16:16 |X|X|X|X|X|X|DS:r16 � pointer from memory dword| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C5 /r |LDS r32,m16:32 | | | |X|X|X|DS:r32 � pointer from memory fword| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C4 /r |LES r16,m16:16 |X|X|X|X|X|X|ES:r16 � pointer from memory dword| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C4 /r |LES r32,m16:32 | | | |X|X|X|ES:r32 � pointer from memory fword| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F B4 /r |LFS r16,m16:16 | | | |X|X|X|FS:r16 � pointer from memory dword| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F B4 /r |LFS r32,m16:32 | | | |X|X|X|FS:r32 � pointer from memory fword| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F B5 /r |LGS r16,m16:16 | | | |X|X|X|GS:r16 � pointer from memory dword| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F B5 /r |LGS r32,m16:32 | | | |X|X|X|GS:r32 � pointer from memory fword| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F B2 /r |LSS r16,m16:16 | | | |X|X|X|SS:r16 � pointer from memory dword| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F B2 /r |LSS r32,m16:32 | | | |X|X|X|SS:r32 � pointer from memory fword| \------------------------------------------------------------------------------/
The LGS, LSS, LDS, LES, and LFS instructions read a full pointer from memory and store it in the selected segment register:register pair. The full pointer loads 16-bits into the segment register SS, DS, ES, FS, or GS. The other register loads 32-bits if the operand-size attribute is 32-bits, or loads 16-bits if the operand-size attribute is 16-bits. The other 16- or 32-bit register to be loaded is determined by the r16 or r32 register operand specified. When an assignment is made to one of the segment registers, the descriptor is also loaded into the segment register. The data for the register is obtained from the descriptor table entry for the selector given. A null selector (values 0000-0003) can be loaded into DS, ES, FS, or GS registers without causing a protection exception. (Any subsequent reference to a segment whose corresponding segment register is loaded with a null selector to address memory causes a #GP(0) exception. No memory reference to the segement occurs.) The following is a listing of the Protected Mode checks and actions taken in the loading of a segment register: IF SS is loaded; IF selector is null THEN #GP(0); FI; Selector index must be within its descriptor table limits ELSE #GP(selector); Selector's RPL must equal CPL ELSE #GP(selector); AR byte must indicate a writable data segment ELSE #GP(selector); DPL in the AR byte must equal CPL ELSE #GP(selector); Segment must be marked present ELSE #SS(selector); Load SS with selector; Load SS with descriptor; IF DS, ES, FS, or GS is loaded with non-null selector: Selector index must be within its descriptor table limits ELSE #GP(selector); AR byte must indicate data or readable code segment ELSE #GP(selector); IF data or nonconforming code THEN both the RPL and the CPL must be less than or equal to DPL in AR byte; ELSE #GP(selector); Segment must be marked present ELSE #NP(selector); Load segment register with selector and RPL bits; Load segment register with descriptor; IF DS, ES, FS or GS is loaded with a null selector: Load segment register with selector; Clear descriptor valid bit;
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C5 /r |LDS r16,m16:16 |X|X|X|X|X|X|DS:r16 � pointer from memory dword| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C5 /r |LDS r32,m16:32 | | | |X|X|X|DS:r32 � pointer from memory fword| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C4 /r |LES r16,m16:16 |X|X|X|X|X|X|ES:r16 � pointer from memory dword| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C4 /r |LES r32,m16:32 | | | |X|X|X|ES:r32 � pointer from memory fword| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F B4 /r |LFS r16,m16:16 | | | |X|X|X|FS:r16 � pointer from memory dword| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F B4 /r |LFS r32,m16:32 | | | |X|X|X|FS:r32 � pointer from memory fword| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F B5 /r |LGS r16,m16:16 | | | |X|X|X|GS:r16 � pointer from memory dword| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F B5 /r |LGS r32,m16:32 | | | |X|X|X|GS:r32 � pointer from memory fword| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F B2 /r |LSS r16,m16:16 | | | |X|X|X|SS:r16 � pointer from memory dword| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F B2 /r |LSS r32,m16:32 | | | |X|X|X|SS:r32 � pointer from memory fword| \------------------------------------------------------------------------------/ Description The LGS, LSS, LDS, LES, and LFS instructions read a full pointer from memory and store it in the selected segment register:register pair. The full pointer loads 16-bits into the segment register SS, DS, ES, FS, or GS. The other register loads 32-bits if the operand-size attribute is 32-bits, or loads 16-bits if the operand-size attribute is 16-bits. The other 16- or 32-bit register to be loaded is determined by the r16 or r32 register operand specified. When an assignment is made to one of the segment registers, the descriptor is also loaded into the segment register. The data for the register is obtained from the descriptor table entry for the selector given. A null selector (values 0000-0003) can be loaded into DS, ES, FS, or GS registers without causing a protection exception. (Any subsequent reference to a segment whose corresponding segment register is loaded with a null selector to address memory causes a #GP(0) exception. No memory reference to the segement occurs.) The following is a listing of the Protected Mode checks and actions taken in the loading of a segment register: IF SS is loaded; IF selector is null THEN #GP(0); FI; Selector index must be within its descriptor table limits ELSE #GP(selector); Selector's RPL must equal CPL ELSE #GP(selector); AR byte must indicate a writable data segment ELSE #GP(selector); DPL in the AR byte must equal CPL ELSE #GP(selector); Segment must be marked present ELSE #SS(selector); Load SS with selector; Load SS with descriptor; IF DS, ES, FS, or GS is loaded with non-null selector: Selector index must be within its descriptor table limits ELSE #GP(selector); AR byte must indicate data or readable code segment ELSE #GP(selector); IF data or nonconforming code THEN both the RPL and the CPL must be less than or equal to DPL in AR byte; ELSE #GP(selector); Segment must be marked present ELSE #NP(selector); Load segment register with selector and RPL bits; Load segment register with descriptor; IF DS, ES, FS or GS is loaded with a null selector: Load segment register with selector; Clear descriptor valid bit; Operation CASE instruction OF LSS: Sreg is SS; (* Load SS register *) LDS: Sreg is DS; (* Load DS register *) LES: Sreg is ES; (* Load ES register *) LFS: Sreg is FS; (* Load FS register *) LGS: Sreg is DS; (* Load GS register *) ESAC; IF (OperandSize = 16) THEN r16 � [Effective Address]; (* 16-bit transfer *) Sreg � [Effective Address + 2]; (* 16-bit transfer *) (* In Protected Mode, load the descriptor into the segment register *) ELSE (* OperandSize = 32 *) r32 � [Effective Address]; (* 32-bit transfer *) Sreg � [Effective Address + 4]; (* 16-bit transfer *) (* In Protected Mode, load the descriptor into the segment register *) FI; Protected Mode Exceptions #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; the second operand must be a memory operand, not a register-if a register then #UD Fault; #GP(0) if a null selector is loaded into SS; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions The second operand must be a memory operand, not a register, Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions LEA-Load Effective Address
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |8D /r |LEA r16,m |X|X|X|X|X|X|r16 � effective address for m | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |8D /r |LEA r32,m | | | |X|X|X|r32 � effective address for m | \------------------------------------------------------------------------------/
The LEA instruction calculates the effective address (offset part) and stores it in the specified register. The operand-size attribute of the instruction (represented by OperandSize in the algorithm under "Operation" above) is determined by the chosen register. The address-size attribute ( represented by AddressSize) is determined by the attribute of the code segment. (See Operand-Size and Address-Size Attributes.) The address-size and operand-size attributes affect the action performed by the LEA instruction, as follows: /----------------------------------------------------------\ |OPERAND |ADDRESS |ACTION PERFORMED | |SIZE |SIZE | | |--------+--------+----------------------------------------| | 16 | 16 |16-bit effective address is calculated | | | |and stored in requested 16-bit register | | | |destination. | |--------+--------+----------------------------------------| | 16 | 32 |32-bit effective address is calculated. | | | |The lower 16-bits of the address are | | | |stored in the requested 16-bit register | | | |destination. | |--------+--------+----------------------------------------| | 32 | 16 |16-bit effective address is calculated. | | | |The 16-bit address is zero-extended and | | | |stored in the requested 32-bit register | | | |destination. | |--------+--------+----------------------------------------| | 32 | 32 |32-bit effective address is calculated | | | |and stored in the requested 32-bit | | | |register destination. | \----------------------------------------------------------/
Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |8D /r |LEA r16,m |X|X|X|X|X|X|r16 � effective address for m | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |8D /r |LEA r32,m | | | |X|X|X|r32 � effective address for m | \------------------------------------------------------------------------------/ Description The LEA instruction calculates the effective address (offset part) and stores it in the specified register. The operand-size attribute of the instruction (represented by OperandSize in the algorithm under "Operation" above) is determined by the chosen register. The address-size attribute ( represented by AddressSize) is determined by the attribute of the code segment. (See Operand-Size and Address-Size Attributes.) The address-size and operand-size attributes affect the action performed by the LEA instruction, as follows: /----------------------------------------------------------\ |OPERAND |ADDRESS |ACTION PERFORMED | |SIZE |SIZE | | |--------+--------+----------------------------------------| | 16 | 16 |16-bit effective address is calculated | | | |and stored in requested 16-bit register | | | |destination. | |--------+--------+----------------------------------------| | 16 | 32 |32-bit effective address is calculated. | | | |The lower 16-bits of the address are | | | |stored in the requested 16-bit register | | | |destination. | |--------+--------+----------------------------------------| | 32 | 16 |16-bit effective address is calculated. | | | |The 16-bit address is zero-extended and | | | |stored in the requested 32-bit register | | | |destination. | |--------+--------+----------------------------------------| | 32 | 32 |32-bit effective address is calculated | | | |and stored in the requested 32-bit | | | |register destination. | \----------------------------------------------------------/ Operation IF OperandSize = 16 AND AddressSize = 16 THEN r16 � Addr(m); ELSE IF OperandSize = 16 AND AddressSize = 32 THEN r16 � Truncate_to_16bits(Addr(m)); (* 32-bit address *) ELSE IF OperandSize = 32 AND AddressSize = 16 THEN r32 � Truncate_to_16bits(Addr(m)) and zero extend; ELSE IF OperandSize = 32 AND AddressSize = 32 THEN r32 � Addr(m); FI; FI; FI; FI; Protected Mode Exceptions #UD if the second operand is a register. Real Address Mode Exceptions Interrupt 6 if the second operand is a register. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode. Notes Different assemblers may use different algorithms based on the size attribute and symbolic reference of the second operand. Related Information Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions LEAVE-High Level Procedure Exit
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C9 |LEAVE | |X|X|X|X|X|Set SP to BP, then pop BP | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C9 |LEAVE | | | |X|X|X|Set ESP to EBP, then pop EBP | \------------------------------------------------------------------------------/
The LEAVE instruction reverses the actions of the ENTER instruction. By copying the frame pointer to the stack pointer, the LEAVE instruction releases the stack space used by a procedure for its local variables. The old frame pointer is popped into the BP or EBP register, restoring the caller's frame. A subsequent RET nn instruction removes any arguments pushed onto the stack of the exiting procedure.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C9 |LEAVE | |X|X|X|X|X|Set SP to BP, then pop BP | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C9 |LEAVE | | | |X|X|X|Set ESP to EBP, then pop EBP | \------------------------------------------------------------------------------/ Description The LEAVE instruction reverses the actions of the ENTER instruction. By copying the frame pointer to the stack pointer, the LEAVE instruction releases the stack space used by a procedure for its local variables. The old frame pointer is popped into the BP or EBP register, restoring the caller's frame. A subsequent RET nn instruction removes any arguments pushed onto the stack of the exiting procedure. Operation IF StackAddrSize = 16 THEN SP � BP; ELSE (* StackAddrSize = 32 *) ESP � EBP; FI; IF OperandSize = 16 THEN BP � Pop(); ELSE (* OperandSize = 32 *) EBP � Pop(); FI; Protected Mode Exceptions #SS(0) if the BP register does not point to a location within the limits of the current stack segment. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions LES-Load Full Pointer See entry for LDS/LES/LFS/LGS/LSS. LFS-Load Full Pointer See entry for LDS/LES/LFS/LGS/LSS. LGDT/LIDT-Load Global/Interrupt Descriptor Table Register
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 01 /2 |LGDT m16&32 | | |X|X|X|X|GDTR � memory fword (6 bytes) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 01 /3 |LIDT m16&32 | | |X|X|X|X|IDTR � memory fword (6 bytes) | \------------------------------------------------------------------------------/
The LGDT and LIDT instructions load a linear base address and limit value from a six-byte data operand in memory into the GDTR or IDTR, respectively. If a 16-bit operand is used with the LGDT or LIDT instruction, the register is loaded with a 16-bit limit and a 24-bit base, and the high-order eight bits of the six-byte data operand are not used. If a 32-bit operand is used , a 16-bit limit and a 32-bit base is loaded; the high-order eight bits of the six-byte operand are used as high-order base address bits. The SGDT and SIDT instructions always store into all 48 bits of the six- byte data operand. With the 16-bit processors, the upper eight bits are undefined after the SGDT or SIDT instruction is run. With the 32-bit processors, the upper right eight bits are written with the high-order eight address bits, for both a 16-bit operand and a 32-bit operand. If the LGDT or LIDT instruction is used with a 16-bit operand to load the register stored by the SGDT or SIDT instruction, the upper eight bits are stored as zeros. The LGDT and LIDT instructions appear in operating system software; they are not used in application programs. They are the only instructions that directly load a linear address (i.e., not a segment relative address) in Protected Mode.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 01 /2 |LGDT m16&32 | | |X|X|X|X|GDTR � memory fword (6 bytes) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 01 /3 |LIDT m16&32 | | |X|X|X|X|IDTR � memory fword (6 bytes) | \------------------------------------------------------------------------------/ Description The LGDT and LIDT instructions load a linear base address and limit value from a six-byte data operand in memory into the GDTR or IDTR, respectively. If a 16-bit operand is used with the LGDT or LIDT instruction, the register is loaded with a 16-bit limit and a 24-bit base, and the high-order eight bits of the six-byte data operand are not used. If a 32-bit operand is used , a 16-bit limit and a 32-bit base is loaded; the high-order eight bits of the six-byte operand are used as high-order base address bits. The SGDT and SIDT instructions always store into all 48 bits of the six- byte data operand. With the 16-bit processors, the upper eight bits are undefined after the SGDT or SIDT instruction is run. With the 32-bit processors, the upper right eight bits are written with the high-order eight address bits, for both a 16-bit operand and a 32-bit operand. If the LGDT or LIDT instruction is used with a 16-bit operand to load the register stored by the SGDT or SIDT instruction, the upper eight bits are stored as zeros. The LGDT and LIDT instructions appear in operating system software; they are not used in application programs. They are the only instructions that directly load a linear address (i.e., not a segment relative address) in Protected Mode. Operation IF instruction = LIDT THEN IF OperandSize = 16 THEN IDTR.Limit:Base � m16:24 (* 24-bits of base loaded *) ELSE IDTR.Limit:Base � m16:32 FI; ELSE (* instruction = LGDT *) IF OperandSize = 16 THEN GDTR.Limit:Base � m16:24 (* 24-bits of base loaded *) ELSE GDTR.Limit:Base � m16:32; FI; FI; Protected Mode Exceptions #GP(0) if the current privilege level is not 0; #UD if the source operand is a register; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH; Interrupt 6 if the source operand is a register. Note: These instructions are valid in Real Address Mode to allow power-up initialization for Protected Mode. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions LGS-Load Full Pointer See entry for LDS/LES/LFS/LGS/LSS. LLDT-Load Local Descriptor Table Register
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 00 /2 |LLDT r/m16 | | |X|X|X|X|LDTR � r/m16 selector | \------------------------------------------------------------------------------/
The LLDT instruction loads the Local Descriptor Table register (LDTR). The word operand (memory or register) to the LLDT instruction should contain a selector to the Global Descriptor Table (GDT). The GDT entry should be a Local Descriptor Table. If so, then the LDTR is loaded from the entry. The descriptor registers DS, ES, SS, FS, GS, and CS are not affected. The LDT field in the task state segment does not change. The selector operand can be 0; if so, the LDTR is marked invalid. All descriptor references (except by the LAR, VERR, VERW or LSL instructions) cause a #GP fault. The LLDT instruction is used in operating system software; it is not used in application programs.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 00 /2 |LLDT r/m16 | | |X|X|X|X|LDTR � r/m16 selector | \------------------------------------------------------------------------------/ Description The LLDT instruction loads the Local Descriptor Table register (LDTR). The word operand (memory or register) to the LLDT instruction should contain a selector to the Global Descriptor Table (GDT). The GDT entry should be a Local Descriptor Table. If so, then the LDTR is loaded from the entry. The descriptor registers DS, ES, SS, FS, GS, and CS are not affected. The LDT field in the task state segment does not change. The selector operand can be 0; if so, the LDTR is marked invalid. All descriptor references (except by the LAR, VERR, VERW or LSL instructions) cause a #GP fault. The LLDT instruction is used in operating system software; it is not used in application programs. Operation LDTR � SRC; Protected Mode Exceptions #GP(0) if the current privilege level is not 0; #GP(selector) if the selector operand does not point into the Global Descriptor Table, or if the entry in the GDT is not a Local Descriptor Table; #NP(selector) if the LDT descriptor is not present; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault. Real Address Mode Exceptions Interrupt 6; the LLDT instruction is not recognized in Real Address Mode. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode (because the instruction is not recognized, it will not run or perform a memory reference). Note The operand-size attribute has no effect on this instruction. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions LIDT-Load Interrupt Descriptor Table Register See entry for LGDT/LIDT-Load Global Descriptor Table Register/Load Interrupt Descriptor Table Register. LMSW-Load Machine Status Word
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 01 /6 |LMSW r/m16 | | |X|X|X|X|Load r/m16 into machine status | | | | | | | | | |word | \------------------------------------------------------------------------------/
The LMSW instruction loads the machine status word (part of the CR0 register) from the source operand. This instruction can be used to switch to Protected Mode; if so, it must be followed by an intrasegment jump to flush the instruction queue. The LMSW instruction will not switch back to Real Address Mode. The LMSW instruction is used only in operating system software. It is not used in application programs.
Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 01 /6 |LMSW r/m16 | | |X|X|X|X|Load r/m16 into machine status | | | | | | | | | |word | \------------------------------------------------------------------------------/ Description The LMSW instruction loads the machine status word (part of the CR0 register) from the source operand. This instruction can be used to switch to Protected Mode; if so, it must be followed by an intrasegment jump to flush the instruction queue. The LMSW instruction will not switch back to Real Address Mode. The LMSW instruction is used only in operating system software. It is not used in application programs. Operation MSW � r/m16; (* 16 bits is stored in the machine status word *) Protected Mode Exceptions #GP(0) if the current privilege level is not 0; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS (0) for an illegal address in the SS segment; #PF(fault-code) for a page fault. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in Protected Mode. Notes The operand-size attribute has no effect on this instruction. This instruction is provided for compatibility with the Intel286 processor; programs for the Intel386, Intel486, and Pentium processors should use the MOV CR0, ... instruction instead. The LMSW instruction does not affect the PG, ET, or NE bits, and it cannot be used to clear the PE bit. Related Information Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions LOCK-Assert LOCK# Signal Prefix
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F0 |LOCK |X|X|X|X|X|X|Assert LOCK# signal for next | | | | | | | | | |instruction | \------------------------------------------------------------------------------/
The LOCK prefix causes the LOCK# signal of the processor to be asserted during processing of the instruction that follows it. In a multiprocessor environment, this signal can be used to ensure that the processor has exclusive use of any shared memory while LOCK# is asserted. The read-modify -write sequence typically used to implement test-and-set on the Pentium processor is the BTS instruction. The LOCK prefix functions only with the following instructions: BTS, BTR, BTC mem, reg/imm XCHG reg, mem XCHG mem, reg ADD, OR, ADC, SBB, AND, SUB, XOR mem, reg/imm NOT, NEG, INC, DEC mem CMPXCHG, XADD An undefined opcode trap will be generated if a LOCK prefix is used with any instruction not listed above. The XCHG instruction always asserts LOCK# regardless of the presence or absence of the LOCK prefix. The integrity of the LOCK prefix is not affected by the alignment of the memory field. Memory locking is observed for arbitrarily misaligned fields.
Description Flags Affected Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F0 |LOCK |X|X|X|X|X|X|Assert LOCK# signal for next | | | | | | | | | |instruction | \------------------------------------------------------------------------------/ Description The LOCK prefix causes the LOCK# signal of the processor to be asserted during processing of the instruction that follows it. In a multiprocessor environment, this signal can be used to ensure that the processor has exclusive use of any shared memory while LOCK# is asserted. The read-modify -write sequence typically used to implement test-and-set on the Pentium processor is the BTS instruction. The LOCK prefix functions only with the following instructions: BTS, BTR, BTC mem, reg/imm XCHG reg, mem XCHG mem, reg ADD, OR, ADC, SBB, AND, SUB, XOR mem, reg/imm NOT, NEG, INC, DEC mem CMPXCHG, XADD An undefined opcode trap will be generated if a LOCK prefix is used with any instruction not listed above. The XCHG instruction always asserts LOCK# regardless of the presence or absence of the LOCK prefix. The integrity of the LOCK prefix is not affected by the alignment of the memory field. Memory locking is observed for arbitrarily misaligned fields. Protected Mode Exceptions #UD if the LOCK prefix is used with an instruction not listed in the " Description" section above; other exceptions can be generated by the subsequent (locked) instruction. Real Address Mode Exceptions Interrupt 6 if the LOCK prefix is used with an instruction not listed in the "Description" section above; exceptions can still be generated by the subsequent (locked) instruction. Virtual 8086 Mode Exceptions #UD if the LOCK prefix is used with an instruction not listed in the " Description" section above; exceptions can still be generated by the subsequent (locked) instruction. Related Information Description Flags Affected Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions LODS/LODSB/LODSW/LODSD-Load String Operand
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |AC |LODS m8 |X|X|X|X|X|X|AL � byte at [(E)SI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |AD |LODS m16 |X|X|X|X|X|X|AX � word at [(E)SI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |AD |LODS m32 | | | |X|X|X|EAX � dword at [(E)SI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |AC |LODSB |X|X|X|X|X|X|AL � byte at DS:[(E)SI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |AD |LODSW |X|X|X|X|X|X|AX � word at DS:[(E)SI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |AD |LODSD | | | |X|X|X|EAX � dword at DS:[(E)SI] | \------------------------------------------------------------------------------/
The LODS instruction loads the AL, AX, or EAX register with the memory byte , word, or doubleword at the location pointed to by the source-index register. After the transfer is made, the source-index register is automatically advanced. If the DF flag is 0 (the CLD instruction was run), the source index increments; if the DF flag is 1 (the STD instruction was run), it decrements. The increment or decrement is 1 if a byte is loaded, 2 if a word is loaded, or 4 if a doubleword is loaded. If the address-size attribute for this instruction is 16-bits, the SI register is used for the source-index register; otherwise the address-size attribute is 32-bits, and the ESI register is used. The address of the source data is determined solely by the contents of the ESI or SI register. Load the correct index value into the SI register before running the LODS instruction. The LODSB, LODSW, and LODSD instructions are synonyms for the byte, word, and doubleword LODS instructions. The LODS instruction can be preceded by the REP prefix; however, the LODS instruction is used more typically within a LOOP construct, because further processing of the data moved into the EAX, AX, or AL register is usually necessary.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |AC |LODS m8 |X|X|X|X|X|X|AL � byte at [(E)SI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |AD |LODS m16 |X|X|X|X|X|X|AX � word at [(E)SI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |AD |LODS m32 | | | |X|X|X|EAX � dword at [(E)SI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |AC |LODSB |X|X|X|X|X|X|AL � byte at DS:[(E)SI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |AD |LODSW |X|X|X|X|X|X|AX � word at DS:[(E)SI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |AD |LODSD | | | |X|X|X|EAX � dword at DS:[(E)SI] | \------------------------------------------------------------------------------/ Description The LODS instruction loads the AL, AX, or EAX register with the memory byte , word, or doubleword at the location pointed to by the source-index register. After the transfer is made, the source-index register is automatically advanced. If the DF flag is 0 (the CLD instruction was run), the source index increments; if the DF flag is 1 (the STD instruction was run), it decrements. The increment or decrement is 1 if a byte is loaded, 2 if a word is loaded, or 4 if a doubleword is loaded. If the address-size attribute for this instruction is 16-bits, the SI register is used for the source-index register; otherwise the address-size attribute is 32-bits, and the ESI register is used. The address of the source data is determined solely by the contents of the ESI or SI register. Load the correct index value into the SI register before running the LODS instruction. The LODSB, LODSW, and LODSD instructions are synonyms for the byte, word, and doubleword LODS instructions. The LODS instruction can be preceded by the REP prefix; however, the LODS instruction is used more typically within a LOOP construct, because further processing of the data moved into the EAX, AX, or AL register is usually necessary. Operation AddressSize = 16 THEN use SI for source-index ELSE (* AddressSize = 32 *) use ESI for source-index; FI; IF byte type of instruction THEN AL �[source-index]; (* byte load *) IF DF = 0 THEN IncDec � 1 ELSE IncDec � -1; FI; ELSE IF OperandSize = 16 THEN AX � [source-index]; (* word load *) IF DF = 0 THEN IncDec � 2 ELSE IncDec � -2; FI; ELSE (* OperandSize = 32 *) FAX � [source-index]; (* dword load *) IF DF = 0 THEN IncDec � 4 ELSE IncDec � -4; FI; FI; FI; source-index � source-index + IncDec Protected Mode Exceptions #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF( fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions LOOP/LOOPcond-Loop Control with CX Counter
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E2 cb |LOOP rel8 |X|X|X|X|X|X|DEC (E)CX; jump if (E)CX <> 0 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E2 cb |LOOPW rel8 | | | |X|X|X|DEC CX; jump if CX <> 0 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E2 cb |LOOPD rel8 | | | |X|X|X|DEC ECX; jump if ECX <> 0 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E1 cb |LOOPE rel8 |X|X|X|X|X|X|DEC (E)CX, jump if (E)CX <> 0 and | | | | | | | | | |ZF=1 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E1 cb |LOOPEW rel8 | | | |X|X|X|DEC CX, jump if CX <> 0 and ZF=1 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E1 cb |LOOPED rel8 | | | |X|X|X|DEC ECX; jump if ECX <> 0 and ZF=1| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E1 cb |LOOPZ rel8 |X|X|X|X|X|X|DEC (E)CX; jump if (E)CX <> 0 and | | | | | | | | | |ZF=1 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E1 cb |LOOPZW rel8 | | | |X|X|X|DEC CX; jump if CX <> 0 and ZF=1 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E1 cb |LOOPZD rel8 | | | |X|X|X|DEC ECX; jump if ECX <> 0 and ZF=1| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E0 cb |LOOPNE rel8 |X|X|X|X|X|X|DEC (E)CX; jump if (E)CX <> 0 and | | | | | | | | | |ZF=0 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E0 cb |LOOPNEW rel8 | | | |X|X|X|DEC CX; jump if CX <> 0 and ZF=0 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E0 cb |LOOPNED rel8 | | | |X|X|X|DEC ECX; jump if ECX <> 0 and ZF=0| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E0 cb |LOOPNZ rel8 |X|X|X|X|X|X|DEC (E)CX; jump if (E)CX <> 0 and | | | | | | | | | |ZF=0 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E0 cb |LOOPNZW rel8 | | | |X|X|X|DEC CX; jump if CX <> 0 and ZF=0 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E0 cb |LOOPNZD rel8 | | | |X|X|X|DEC ECX; jump if ECX <> 0 and ZF=0| \------------------------------------------------------------------------------/
The LOOP instruction decrements the count register without changing any of the flags. Conditions are then checked for the form of the LOOP instruction being used. If the conditions are met, a short jump is made to the label given by the operand to the LOOP instruction. If the address-size attribute is 16-bits, the CX register is used as the count register; otherwise the ECX register is used. The operand of the LOOP instruction must be in the range from 128 (decimal) bytes before the instruction to 127 bytes ahead of the instruction. The LOOP instructions provide iteration control and combine loop index management with conditional branching. Use the LOOP instruction by loading an unsigned iteration count into the count register, then code the LOOP instruction at the end of a series of instructions to be iterated. The destination of the LOOP instruction is a label that points to the beginning of the iteration.
Description Flags Affected Notes Operation Protected Mode Exceptions Protected Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E2 cb |LOOP rel8 |X|X|X|X|X|X|DEC (E)CX; jump if (E)CX <> 0 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E2 cb |LOOPW rel8 | | | |X|X|X|DEC CX; jump if CX <> 0 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E2 cb |LOOPD rel8 | | | |X|X|X|DEC ECX; jump if ECX <> 0 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E1 cb |LOOPE rel8 |X|X|X|X|X|X|DEC (E)CX, jump if (E)CX <> 0 and | | | | | | | | | |ZF=1 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E1 cb |LOOPEW rel8 | | | |X|X|X|DEC CX, jump if CX <> 0 and ZF=1 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E1 cb |LOOPED rel8 | | | |X|X|X|DEC ECX; jump if ECX <> 0 and ZF=1| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E1 cb |LOOPZ rel8 |X|X|X|X|X|X|DEC (E)CX; jump if (E)CX <> 0 and | | | | | | | | | |ZF=1 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E1 cb |LOOPZW rel8 | | | |X|X|X|DEC CX; jump if CX <> 0 and ZF=1 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E1 cb |LOOPZD rel8 | | | |X|X|X|DEC ECX; jump if ECX <> 0 and ZF=1| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E0 cb |LOOPNE rel8 |X|X|X|X|X|X|DEC (E)CX; jump if (E)CX <> 0 and | | | | | | | | | |ZF=0 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E0 cb |LOOPNEW rel8 | | | |X|X|X|DEC CX; jump if CX <> 0 and ZF=0 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E0 cb |LOOPNED rel8 | | | |X|X|X|DEC ECX; jump if ECX <> 0 and ZF=0| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E0 cb |LOOPNZ rel8 |X|X|X|X|X|X|DEC (E)CX; jump if (E)CX <> 0 and | | | | | | | | | |ZF=0 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E0 cb |LOOPNZW rel8 | | | |X|X|X|DEC CX; jump if CX <> 0 and ZF=0 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E0 cb |LOOPNZD rel8 | | | |X|X|X|DEC ECX; jump if ECX <> 0 and ZF=0| \------------------------------------------------------------------------------/ Description The LOOP instruction decrements the count register without changing any of the flags. Conditions are then checked for the form of the LOOP instruction being used. If the conditions are met, a short jump is made to the label given by the operand to the LOOP instruction. If the address-size attribute is 16-bits, the CX register is used as the count register; otherwise the ECX register is used. The operand of the LOOP instruction must be in the range from 128 (decimal) bytes before the instruction to 127 bytes ahead of the instruction. The LOOP instructions provide iteration control and combine loop index management with conditional branching. Use the LOOP instruction by loading an unsigned iteration count into the count register, then code the LOOP instruction at the end of a series of instructions to be iterated. The destination of the LOOP instruction is a label that points to the beginning of the iteration. Operation IF AddressSize = 16 THEN CountReg is CX ELSE CountReg is ECX; FI; CountReg � CountReg - 1; IF instruction<> LOOP THEN IF (instruction = LOOPE) OR (instruction = LOOPZ) THEN BranchCond � (ZF = 1) AND (CountReg <> 0); FI; IF (instruction = LOOPNE) OR (instruction = LOOPNZ) THEN BranchCond � (ZF = 0) AND (CountReg <> 0); FI; FI; IF BranchCond THEN IF OperandSize = 16 THEN IP � IP + SignExtend(rel8); ELSE (* OperandSize = 32 *) EIP � EIP + SignExtend(rel8); FI; FI; Protected Mode Exceptions #GP(0) if the offset jumped to is beyond the limits of the current code segment. Notes The unconditional LOOP instruction takes longer to run than a two- instruction sequence, which decrements the counter register and jumps if the count does not equal zero. All branches are converted into 16-byte code fetches regardless of jump address or cacheability. Related Information Description Flags Affected Notes Operation Protected Mode Exceptions Protected Mode Exceptions Virtual 8086 Mode Exceptions LSL-Load Segment Limit
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 03 /r |LSL r16,r/m16 | | |X|X|X|X|r16 � byte granular segment limit | | | | | | | | | |for selector r/m16 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 03 /r |LSL r32,r/m32 | | | |X|X|X|r32 � byte granular segment limit | | | | | | | | | |for selector r/m32 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 03 /r |LSL r16,r/m16 | | |X|X|X|X|r16 � page granular segment limit | | | | | | | | | |for selector r/m16 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 03 /r |LSL r32,r/m32 | | | |X|X|X|r32 � page granular segment limit | | | | | | | | | |for selector r/m32 | \------------------------------------------------------------------------------/
The LSL instruction loads a register with an unscrambled segment limit, and sets the ZF flag, provided that the source selector is visible at the current privilege level and RPL, within the descriptor table, and that the descriptor is a type accepted by the LSL instruction. Otherwise, the ZF flag is cleared, and the destination register is unchanged. The segment limit is loaded as a byte granular value. If the descriptor has a page granular segment limit, the LSL instruction will translate it to a byte limit before loading it in the destination register (shift left 12 the 20- bit "raw" limit from descriptor, then OR with 00000FFFH). The 32-bit forms of the LSL instruction store the 32-bit byte granular limit in the 32-bit destination register. For 16-bit operand sizes, the limit is computed to form a valid 32-bit limit. However, the upper 16 bits are chopped and only the low-order 16 bits are loaded into the destination operand. Code and data segment descriptors are valid for the LSL instruction. The valid special segment and gate descriptor types for the LSL instruction are given in the following table: /----------------------------------------------\ | TYPE |NAME |VALID/INVALID | |------+------------------------+--------------| | 0 |Invalid | Invalid | |------+------------------------+--------------| | 1 |Available 16-bit TSS | Valid | |------+------------------------+--------------| | 2 |LDT | Valid | |------+------------------------+--------------| | 3 |Busy 16-bit TSS | Valid | |------+------------------------+--------------| | 4 |16-bit call gate | Invalid | |------+------------------------+--------------| | 5 |16-bit/32-bit task gate | Invalid | |------+------------------------+--------------| | 6 |16-bit trap gate | Invalid | |------+------------------------+--------------| | 7 |16-bit interrupt gate | Invalid | |------+------------------------+--------------| | 8 |Invalid | Invalid | |------+------------------------+--------------| | 9 |Available 32-bit TSS | Valid | |------+------------------------+--------------| | A |Invalid | Invalid | |------+------------------------+--------------| | B |Busy 32-bit TSS | Valid | |------+------------------------+--------------| | C |32-bit call gate | Invalid | |------+------------------------+--------------| | D |Invalid | Invalid | |------+------------------------+--------------| | E |32-bit trap gate | Invalid | |------+------------------------+--------------| | F |32-bit interrupt gate | Invalid | \----------------------------------------------/
Description Flags Affected Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 03 /r |LSL r16,r/m16 | | |X|X|X|X|r16 � byte granular segment limit | | | | | | | | | |for selector r/m16 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 03 /r |LSL r32,r/m32 | | | |X|X|X|r32 � byte granular segment limit | | | | | | | | | |for selector r/m32 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 03 /r |LSL r16,r/m16 | | |X|X|X|X|r16 � page granular segment limit | | | | | | | | | |for selector r/m16 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 03 /r |LSL r32,r/m32 | | | |X|X|X|r32 � page granular segment limit | | | | | | | | | |for selector r/m32 | \------------------------------------------------------------------------------/ Description The LSL instruction loads a register with an unscrambled segment limit, and sets the ZF flag, provided that the source selector is visible at the current privilege level and RPL, within the descriptor table, and that the descriptor is a type accepted by the LSL instruction. Otherwise, the ZF flag is cleared, and the destination register is unchanged. The segment limit is loaded as a byte granular value. If the descriptor has a page granular segment limit, the LSL instruction will translate it to a byte limit before loading it in the destination register (shift left 12 the 20- bit "raw" limit from descriptor, then OR with 00000FFFH). The 32-bit forms of the LSL instruction store the 32-bit byte granular limit in the 32-bit destination register. For 16-bit operand sizes, the limit is computed to form a valid 32-bit limit. However, the upper 16 bits are chopped and only the low-order 16 bits are loaded into the destination operand. Code and data segment descriptors are valid for the LSL instruction. The valid special segment and gate descriptor types for the LSL instruction are given in the following table: /----------------------------------------------\ | TYPE |NAME |VALID/INVALID | |------+------------------------+--------------| | 0 |Invalid | Invalid | |------+------------------------+--------------| | 1 |Available 16-bit TSS | Valid | |------+------------------------+--------------| | 2 |LDT | Valid | |------+------------------------+--------------| | 3 |Busy 16-bit TSS | Valid | |------+------------------------+--------------| | 4 |16-bit call gate | Invalid | |------+------------------------+--------------| | 5 |16-bit/32-bit task gate | Invalid | |------+------------------------+--------------| | 6 |16-bit trap gate | Invalid | |------+------------------------+--------------| | 7 |16-bit interrupt gate | Invalid | |------+------------------------+--------------| | 8 |Invalid | Invalid | |------+------------------------+--------------| | 9 |Available 32-bit TSS | Valid | |------+------------------------+--------------| | A |Invalid | Invalid | |------+------------------------+--------------| | B |Busy 32-bit TSS | Valid | |------+------------------------+--------------| | C |32-bit call gate | Invalid | |------+------------------------+--------------| | D |Invalid | Invalid | |------+------------------------+--------------| | E |32-bit trap gate | Invalid | |------+------------------------+--------------| | F |32-bit interrupt gate | Invalid | \----------------------------------------------/ Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| | | | | |* | | | | \-----------------------/ The ZF flag is set unless the selector is invisible or of the wrong type, in which case the ZF flag is cleared. Protected Mode Exceptions #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments: #SS(0) for an illegal address in the SS segment; #PF( fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 6; the LSL instruction is not recognized in Real Address Mode. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode (because the instruction is not recognized, it will not run or perform a memory reference). Related Information Description Flags Affected Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions LSS-Load Full Pointer See entry for LDS/LES/LFS/LGS/LSS. LTR-Load Task Register
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 00 /3 |LTR r/m16 | | |X|X|X|X|Load EA word into task register | \------------------------------------------------------------------------------/
The LTR instruction loads the task register with a selector from the source register or memory location specified by the operand. The loaded TSS is marked busy. A task switch does not occur. The LTR instruction is used only in operating system software; it is not used in application programs.
Description Flags Affected Notes Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 00 /3 |LTR r/m16 | | |X|X|X|X|Load EA word into task register | \------------------------------------------------------------------------------/ Description The LTR instruction loads the task register with a selector from the source register or memory location specified by the operand. The loaded TSS is marked busy. A task switch does not occur. The LTR instruction is used only in operating system software; it is not used in application programs. Protected Mode Exceptions #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #GP(0) if the current privilege level is not 0; #GP(selector) if the object named by the source selector is not a TSS or is already busy; #NP(selector) if the TSS is marked "not present;" #PF(fault-code) for a page fault. Real Address Mode Exceptions Interrupt 6; the LTR instruction is not recognized in Real Address Mode. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode. Notes The operand-size attribute has no effect on this instruction. Related Information Description Flags Affected Notes Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions MOV-Move Data
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |88 /r |MOV r/m8,r8 |X|X|X|X|X|X|Move byte register to r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |89 /r |MOV r/m16,r16 |X|X|X|X|X|X|Move word register to r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |89 /r |MOV r/m32,r32 | | | |X|X|X|Move dword register to r/m dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |8A /r |MOV r8,r/m8 |X|X|X|X|X|X|Move r/m byte to byte register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |8B /r |MOV r16,r/m16 |X|X|X|X|X|X|Move r/m word to word register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |8B /r |MOV r32,r/m32 | | | |X|X|X|Move r/m dword to dword register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |8C /r |MOV r/m16,Sreg |X|X|X|X|X|X|Move segment register to r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |8E /r |MOV Sreg,r/m16 |X|X|X|X|X|X|Move r/m word to segment register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |A0 |MOV AL,moffs8 |X|X|X|X|X|X|Move byte at (seg:offset) to AL | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |A1 |MOV AX,moffs16 |X|X|X|X|X|X|Move word at (seg:offset) to AX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |A1 |MOV EAX,moffs32 | | | |X|X|X|Move dword at (seg:offset) to EAX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |A2 |MOV moffs8,AL |X|X|X|X|X|X|Move AL to (seg:offset) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |A3 |MOV moffs16,AX |X|X|X|X|X|X|Move AX to (seg:offset) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |A3 |MOV moffs32,EAX | | | |X|X|X|Move EAX to (seg:offset) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |B0+rb |MOV r8,imm8 |X|X|X|X|X|X|Move immediate byte to byte | | | | | | | | | |register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |B8+rw |MOV r16,imm16 |X|X|X|X|X|X|Move immediate word to word | | | | | | | | | |register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |B8+rd |MOV r32,imm32 | | | |X|X|X|Move immediate dword to dword | | | | | | | | | |register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C6 /0 |MOV r/m8,imm8 |X|X|X|X|X|X|Move immediate byte to r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C7 /0 |MOV r/m16,imm16 |X|X|X|X|X|X|Move immediate word to r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C7 /0 |MOV r/m32,imm32 | | | |X|X|X|Move immediate dword to r/m dword | \------------------------------------------------------------------------------/
The MOV instruction copies the second operand to the first operand. If the destination operand is a segment register (DS, ES, SS, etc.), then data from a descriptor is also loaded into the shadow portion of the register. The data for the register is obtained from the descriptor table entry for the selector given. A null selector (values 0000-0003) can be loaded into the DS, ES, FS, and GS registers without causing an exception; however, use of these registers causes a #GP(0) exception, and no memory reference occurs. A MOV into SS instruction inhibits all interrupts until after the processing of the next instruction (which should be a MOV into ESP instruction). Loading a segment register under Protected Mode results in special checks and actions, as described in the following listing: IF SS is loaded; THEN IF selector is null THEN #GP(0); Selector index must be within its descriptor table limits else #GP(selector); Selector's RPL must equal CPL else #GP(selector); AR byte must indicate a writable data segment else #GP(selector); DPL in the AR byte must equal CPL else #GP(selector); Segment must be marked present else #SS(selector); Load SS with selector; Load SS with descriptor. FI; IF DS, ES, FS or GS is loaded with non-null selector; THEN Selector index must be within its descriptor table limits else #GP(selector); AR byte must indicate data or readable code segment else #GP(selector); IF data or nonconforming code segment THEN both the RPL and the CPL must be less than or equal to DPL in AR byte; ELSE #GP(selector); FI; Segment must be marked present else #NP(selector); Load segment register with selector; Load segment register with descriptor; FI; IF DS, ES, FS or GS is loaded with a null selector; THEN Load segment register with selector; Clear descriptor valid bit; FI;
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |88 /r |MOV r/m8,r8 |X|X|X|X|X|X|Move byte register to r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |89 /r |MOV r/m16,r16 |X|X|X|X|X|X|Move word register to r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |89 /r |MOV r/m32,r32 | | | |X|X|X|Move dword register to r/m dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |8A /r |MOV r8,r/m8 |X|X|X|X|X|X|Move r/m byte to byte register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |8B /r |MOV r16,r/m16 |X|X|X|X|X|X|Move r/m word to word register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |8B /r |MOV r32,r/m32 | | | |X|X|X|Move r/m dword to dword register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |8C /r |MOV r/m16,Sreg |X|X|X|X|X|X|Move segment register to r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |8E /r |MOV Sreg,r/m16 |X|X|X|X|X|X|Move r/m word to segment register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |A0 |MOV AL,moffs8 |X|X|X|X|X|X|Move byte at (seg:offset) to AL | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |A1 |MOV AX,moffs16 |X|X|X|X|X|X|Move word at (seg:offset) to AX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |A1 |MOV EAX,moffs32 | | | |X|X|X|Move dword at (seg:offset) to EAX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |A2 |MOV moffs8,AL |X|X|X|X|X|X|Move AL to (seg:offset) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |A3 |MOV moffs16,AX |X|X|X|X|X|X|Move AX to (seg:offset) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |A3 |MOV moffs32,EAX | | | |X|X|X|Move EAX to (seg:offset) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |B0+rb |MOV r8,imm8 |X|X|X|X|X|X|Move immediate byte to byte | | | | | | | | | |register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |B8+rw |MOV r16,imm16 |X|X|X|X|X|X|Move immediate word to word | | | | | | | | | |register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |B8+rd |MOV r32,imm32 | | | |X|X|X|Move immediate dword to dword | | | | | | | | | |register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C6 /0 |MOV r/m8,imm8 |X|X|X|X|X|X|Move immediate byte to r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C7 /0 |MOV r/m16,imm16 |X|X|X|X|X|X|Move immediate word to r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C7 /0 |MOV r/m32,imm32 | | | |X|X|X|Move immediate dword to r/m dword | \------------------------------------------------------------------------------/ Description The MOV instruction copies the second operand to the first operand. If the destination operand is a segment register (DS, ES, SS, etc.), then data from a descriptor is also loaded into the shadow portion of the register. The data for the register is obtained from the descriptor table entry for the selector given. A null selector (values 0000-0003) can be loaded into the DS, ES, FS, and GS registers without causing an exception; however, use of these registers causes a #GP(0) exception, and no memory reference occurs. A MOV into SS instruction inhibits all interrupts until after the processing of the next instruction (which should be a MOV into ESP instruction). Loading a segment register under Protected Mode results in special checks and actions, as described in the following listing: IF SS is loaded; THEN IF selector is null THEN #GP(0); Selector index must be within its descriptor table limits else #GP(selector); Selector's RPL must equal CPL else #GP(selector); AR byte must indicate a writable data segment else #GP(selector); DPL in the AR byte must equal CPL else #GP(selector); Segment must be marked present else #SS(selector); Load SS with selector; Load SS with descriptor. FI; IF DS, ES, FS or GS is loaded with non-null selector; THEN Selector index must be within its descriptor table limits else #GP(selector); AR byte must indicate data or readable code segment else #GP(selector); IF data or nonconforming code segment THEN both the RPL and the CPL must be less than or equal to DPL in AR byte; ELSE #GP(selector); FI; Segment must be marked present else #NP(selector); Load segment register with selector; Load segment register with descriptor; FI; IF DS, ES, FS or GS is loaded with a null selector; THEN Load segment register with selector; Clear descriptor valid bit; FI; Operation DEST � SRC; Protected Mode Exceptions #GP, #SS, and #NP if a segment register is being loaded; otherwise, #GP(0) if the destination is in a nonwritable segment; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS (0) for an illegal address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions MOV-Move to/from Control Registers
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 22 /r |MOV CR0,r32 | | | |X|X|X|Move r32 to control register 0 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 22 /r |MOV CR2,r32 | | | |X|X|X|Move r32 to control register 2 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 22 /r |MOV CR3,r32 | | | |X|X|X|Move r32 to control register 3 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 22 /r |MOV CR4,r32 | | | | | |X|Move r32 to control register 4 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 20 /r |MOV r32,CR0 | | | |X|X|X|Move control register 0 to r32 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 20 /r |MOV r32,CR2 | | | |X|X|X|Move control register 2 to r32 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 20 /r |MOV r32,CR3 | | | |X|X|X|Move control register 3 to r32 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 20 /r |MOV r32,CR4 | | | | | |X|Move control register 4 to r32 | \------------------------------------------------------------------------------/
The above forms of the MOV instruction store or load CR0, CR2, CR3, and CR4 to or from a general purpose register. Thirty-two bit operands are always used with these instructions, regardless of the operand-size attribute.
Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 22 /r |MOV CR0,r32 | | | |X|X|X|Move r32 to control register 0 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 22 /r |MOV CR2,r32 | | | |X|X|X|Move r32 to control register 2 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 22 /r |MOV CR3,r32 | | | |X|X|X|Move r32 to control register 3 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 22 /r |MOV CR4,r32 | | | | | |X|Move r32 to control register 4 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 20 /r |MOV r32,CR0 | | | |X|X|X|Move control register 0 to r32 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 20 /r |MOV r32,CR2 | | | |X|X|X|Move control register 2 to r32 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 20 /r |MOV r32,CR3 | | | |X|X|X|Move control register 3 to r32 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 20 /r |MOV r32,CR4 | | | | | |X|Move control register 4 to r32 | \------------------------------------------------------------------------------/ Description The above forms of the MOV instruction store or load CR0, CR2, CR3, and CR4 to or from a general purpose register. Thirty-two bit operands are always used with these instructions, regardless of the operand-size attribute. Operation DEST � SRC; Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| |? | | |? |? |? |? |? | \-----------------------/ The OF, SF, ZF, AF, PF, and CF flags are undefined. Protected Mode Exceptions #GP(0) if the current privilege level is not 0. #GP(0) if an attempt is made to write a 1 to any reserved bits of CR4. Real Address Mode Exceptions Interrupt 13 if an attempt is made to write a 1 to any reserved bits of CR4 . Virtual 8086 Mode Exceptions #GP(0) if instruction processing is attempted. Notes The reg field within the ModR/M byte specifies which of the special registers in each category is involved. The two bits in the mod field are always 11. The r/m field specifies the general register involved. Always set undefined or reserved bits to the value previously read. Related Information Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions MOV-Move to/from Debug Registers
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 21 /r |MOV r32,DR0-3 | | | |X|X|X|Move debug register (0,1,2, or 3) | | | | | | | | | |to r32 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 21 /r |MOV r32,DR4/DR5 | | | | | |X|Move debug register (4 or 5) to | | | | | | | | | |r32 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 21 /r |MOV r32,DR6/DR7 | | | |X|X|X|Move debug register (6 or 7) to | | | | | | | | | |r32 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 23 /r |MOV DR0-DR3,r32 | | | |X|X|X|Move r32 to debug register (0,1,2,| | | | | | | | | |or 3) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 23 /r |MOV DR4/DR5,r32 | | | | | |X|Move r32 to debug register (4 or | | | | | | | | | |5) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 23 /r |MOV DR6/DR7,r32 | | | |X|X|X|Move r32 to debug register (6 or | | | | | | | | | |7) | \------------------------------------------------------------------------------/
The above forms of the MOV instruction store or load the DR0, DR1, DR2, DR3 , DR6 and DR7 debug resisters to or from a general purpose register. Thirty-two bit operands are always used with these instructions, regardless of the operand-size attribute. When the DE (Debug Extension) bit in CR4 is clear, MOV instructions using debug registers operate in a manner that is compatible with Intel386 and Intel486 CPUs. References to DR4 and DR5 refer to DR6 and DR7, respectively . When the DE bit in CR4 is set, attempts to run MOV instructions using DR4 and DR5 result in an Undefined Opcode (#UD) exception.
Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 21 /r |MOV r32,DR0-3 | | | |X|X|X|Move debug register (0,1,2, or 3) | | | | | | | | | |to r32 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 21 /r |MOV r32,DR4/DR5 | | | | | |X|Move debug register (4 or 5) to | | | | | | | | | |r32 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 21 /r |MOV r32,DR6/DR7 | | | |X|X|X|Move debug register (6 or 7) to | | | | | | | | | |r32 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 23 /r |MOV DR0-DR3,r32 | | | |X|X|X|Move r32 to debug register (0,1,2,| | | | | | | | | |or 3) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 23 /r |MOV DR4/DR5,r32 | | | | | |X|Move r32 to debug register (4 or | | | | | | | | | |5) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 23 /r |MOV DR6/DR7,r32 | | | |X|X|X|Move r32 to debug register (6 or | | | | | | | | | |7) | \------------------------------------------------------------------------------/ Description The above forms of the MOV instruction store or load the DR0, DR1, DR2, DR3 , DR6 and DR7 debug resisters to or from a general purpose register. Thirty-two bit operands are always used with these instructions, regardless of the operand-size attribute. When the DE (Debug Extension) bit in CR4 is clear, MOV instructions using debug registers operate in a manner that is compatible with Intel386 and Intel486 CPUs. References to DR4 and DR5 refer to DR6 and DR7, respectively . When the DE bit in CR4 is set, attempts to run MOV instructions using DR4 and DR5 result in an Undefined Opcode (#UD) exception. Operation IF ((DE = 1) and (SRC or DEST = DR4 or DR5)) THEN #UD; ELSE DEST � SRC; Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| |? | | |? |? |? |? |? | \-----------------------/ The OF, SF, ZF, AF, PF, and CF flags are undefined. Protected Mode Exceptions #GP(0) if the current privilege level is not 0. #UD if the DE (Debug Extensions) bit of CR4 is set and a MOV instruction is run using DR4 or DR5 . Real Address Mode Exceptions #GP(0) if an attempt is made to write a 1 to any reserved bits of CR4. #UD if the DE (Debug Extensions) bit of CR4 is set and a MOV instruction is run using DR4 or DR5. Virtual 8086 Mode Exceptions #GP(0) if instruction processing is attempted. Notes The instructions must be run at privilege level 0 or in real-address mode; otherwise, a protection exception will be raised. The reg field within the ModR/M byte specifies which of the special registers in each category is involved. The two bits in the mod field are always 11. The r/m field specifies the general register involved. Always set undefined or reserved bits to the value previously read. Related Information Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions MOV-Move to/from Test Registers
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 24 /r |MOV r32,TR3 | | | | |X| |Move test register (3) to r32 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 24 /r |MOV r32,TR4/TR5 | | | | |X| |Move test register (4 or 5) to r32| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 24 /r |MOV r32,TR6/TR7 | | | |X|X| |Move test register (6 or 7) to r32| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 26 /r |MOV TR3,r32 | | | | |X| |Move r32 to test register (3) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 26 /r |MOV TR4/TR5,r32 | | | | |X| |Move r32 to test register (4 or 5)| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 26 /r |MOV TR6/TR7,r32 | | | |X|X| |Move r32 to test register (6 or 7)| \------------------------------------------------------------------------------/
The above forms of the MOV instruction store or load TR3, TR4, TR5, TR6, and TR7 to or from a general purpose register. Thirty-two bit operands are always used with these instructions, regardless of the operand-size attribute.
Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 24 /r |MOV r32,TR3 | | | | |X| |Move test register (3) to r32 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 24 /r |MOV r32,TR4/TR5 | | | | |X| |Move test register (4 or 5) to r32| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 24 /r |MOV r32,TR6/TR7 | | | |X|X| |Move test register (6 or 7) to r32| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 26 /r |MOV TR3,r32 | | | | |X| |Move r32 to test register (3) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 26 /r |MOV TR4/TR5,r32 | | | | |X| |Move r32 to test register (4 or 5)| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 26 /r |MOV TR6/TR7,r32 | | | |X|X| |Move r32 to test register (6 or 7)| \------------------------------------------------------------------------------/ Description The above forms of the MOV instruction store or load TR3, TR4, TR5, TR6, and TR7 to or from a general purpose register. Thirty-two bit operands are always used with these instructions, regardless of the operand-size attribute. Operation DEST � SRC; Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| |? | | |? |? |? |? |? | \-----------------------/ The OF, SF, ZF, AF, PF, and CF flags are undefined. Protected Mode Exceptions #GP(0) if the current privilege level is not 0. #GP(0) if an attempt is made to write a 1 to any reserved bits of CR4. Real Address Mode Exceptions Interrupt 13 if an attempt is made to write a 1 to any reserved bits of CR4 . Virtual 8086 Mode Exceptions #GP(0) if instruction processing is attempted. Notes The instructions must be run at privilege level 0 or in real-address mode; otherwise, a protection exception will be raised. The reg field within the ModR/M byte specifies which of the special registers in each category is involved. The two bits in the mod field are always 11. The r/m field specifies the general register involved. Always set undefined or reserved bits to the value previously read. Related Information Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions MOVS/MOVSB/MOVSW/MOVSD-Move Data from String to String
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |A4 |MOVS m8,m8 |X|X|X|X|X|X|Move byte [(E)SI] to ES:[(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |A5 |MOVS m16,m16 |X|X|X|X|X|X|Move word [(E)SI] to ES:[(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |A5 |MOVS m32,m32 | | | |X|X|X|Move dword [(E)SI] to ES:[(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |A4 |MOVSB |X|X|X|X|X|X|Move byte DS:[(E)SI] to ES:[(E)DI]| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |A5 |MOVSW |X|X|X|X|X|X|Move word DS:[(E)SI] to ES:[(E)DI]| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |A5 |MOVSD | | | |X|X|X|Move dword DS:[(E)SI] to | | | | | | | | | |ES:[(E)DI] | \------------------------------------------------------------------------------/
The MOVS instruction copies the byte or word at [(E)SI] to the byte or word at ES:[(E)DI]. The destination operand must be addressable from the ES register; no segment override is possible for the destination. A segment override can be used for the source operand; the default is the DS register . The addresses of the source and destination are determined solely by the contents of the (E)SI and (E)DI registers. Load the correct index values into the (E)SI and (E)DI registers before running the MOVS instruction. The MOVSB, MOVSW, and MOVSD instructions are synonyms for the byte, word, and doubleword MOVS instructions. After the data is moved, both the (E)SI and (E)DI registers are advanced automatically. If the DF flag is 0 (the CLD instruction was run), the registers are incremented; if the DF flag is 1 (the STD instruction was run ), the registers are decremented. The registers are incremented or decremented by 1 if a byte was moved, 2 if a word was moved, or 4 if a doubleword was moved. The MOVS instruction can be preceded by the REP prefix for block movement of ECX bytes or words. Refer to the REP instruction for details of this operation.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |A4 |MOVS m8,m8 |X|X|X|X|X|X|Move byte [(E)SI] to ES:[(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |A5 |MOVS m16,m16 |X|X|X|X|X|X|Move word [(E)SI] to ES:[(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |A5 |MOVS m32,m32 | | | |X|X|X|Move dword [(E)SI] to ES:[(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |A4 |MOVSB |X|X|X|X|X|X|Move byte DS:[(E)SI] to ES:[(E)DI]| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |A5 |MOVSW |X|X|X|X|X|X|Move word DS:[(E)SI] to ES:[(E)DI]| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |A5 |MOVSD | | | |X|X|X|Move dword DS:[(E)SI] to | | | | | | | | | |ES:[(E)DI] | \------------------------------------------------------------------------------/ Description The MOVS instruction copies the byte or word at [(E)SI] to the byte or word at ES:[(E)DI]. The destination operand must be addressable from the ES register; no segment override is possible for the destination. A segment override can be used for the source operand; the default is the DS register . The addresses of the source and destination are determined solely by the contents of the (E)SI and (E)DI registers. Load the correct index values into the (E)SI and (E)DI registers before running the MOVS instruction. The MOVSB, MOVSW, and MOVSD instructions are synonyms for the byte, word, and doubleword MOVS instructions. After the data is moved, both the (E)SI and (E)DI registers are advanced automatically. If the DF flag is 0 (the CLD instruction was run), the registers are incremented; if the DF flag is 1 (the STD instruction was run ), the registers are decremented. The registers are incremented or decremented by 1 if a byte was moved, 2 if a word was moved, or 4 if a doubleword was moved. The MOVS instruction can be preceded by the REP prefix for block movement of ECX bytes or words. Refer to the REP instruction for details of this operation. Operation IF (instruction = MOVSD) OR (instruction has doubleword operands) THEN OperandSize � 32; ELSE OperandSize � 16; IF AddressSize = 16 THEN use SI for source-index and DI for destination-index; ELSE (* AddressSize = 32 *) use ESI for source-index and EDI for destination-index; FI; IF byte type of instruction THEN [destination-index] � [source-index]; (* byte assignment *) IF DF = 0 THEN IncDec � 1 ELSE IncDec � -1; FI; ELSE IF OperandSize = 16 THEN [destination-index] � [source-index]; (* word assignment *) IF DF = 0 THEN IncDec � 2 ELSE IncDec � -2; FI; ELSE (* OperandSize = 32 *) [destination-index] � [source-index]; (* doubleword assignment *) IF DF = 0 THEN IncDec � 4 ELSE IncDec � -4; FI; FI; FI; source-index � source-index + IncDec; destination-index � destination-index + IncDec; Protected Mode Exceptions #GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS (0) for an illegal address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions MOVSX-Move with Sign-Extend
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F BE /r |MOVSX r16,r/m8 | | | |X|X|X|r16 � sign-extended r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F BE /r |MOVSX r32,r/m8 | | | |X|X|X|r32 � sign-extended r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F BF /r |MOVSX r32,r/m16 | | | |X|X|X|r32 � sign-extended r/m word | \------------------------------------------------------------------------------/
The MOVSX instruction reads the contents of the effective address or register as a byte or a word, sign-extends the value to the operand-size attribute of the instruction (16 or 32 bits), and stores the result in the destination register.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F BE /r |MOVSX r16,r/m8 | | | |X|X|X|r16 � sign-extended r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F BE /r |MOVSX r32,r/m8 | | | |X|X|X|r32 � sign-extended r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F BF /r |MOVSX r32,r/m16 | | | |X|X|X|r32 � sign-extended r/m word | \------------------------------------------------------------------------------/ Description The MOVSX instruction reads the contents of the effective address or register as a byte or a word, sign-extends the value to the operand-size attribute of the instruction (16 or 32 bits), and stores the result in the destination register. Operation DEST � SignExtend(SRC); Protected Mode Exceptions #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS segments; #SS(0) for an illegal address in the SS segment; #PF( fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions MOVZX-Move with Zero-Extend
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F B6 /r |MOVZX r16,r/m8 | | | |X|X|X|r16 � zero-extended r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F B6 /r |MOVZX r32,r/m8 | | | |X|X|X|r32 � zero-extended r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F B7 /r |MOVZX r32,r/m16 | | | |X|X|X|r32 � zero-extended r/m word | \------------------------------------------------------------------------------/
The MOVZX instruction reads the contents of the effective address or register as a byte or a word, zero extends the value to the operand-size attribute of the instruction (16 or 32 bits), and stores the result in the destination register.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F B6 /r |MOVZX r16,r/m8 | | | |X|X|X|r16 � zero-extended r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F B6 /r |MOVZX r32,r/m8 | | | |X|X|X|r32 � zero-extended r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F B7 /r |MOVZX r32,r/m16 | | | |X|X|X|r32 � zero-extended r/m word | \------------------------------------------------------------------------------/ Description The MOVZX instruction reads the contents of the effective address or register as a byte or a word, zero extends the value to the operand-size attribute of the instruction (16 or 32 bits), and stores the result in the destination register. Operation DEST �ZeroExtend(SRC); Protected Mode Exceptions #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF( fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same Exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions MUL-Unsigned Multiplication of AL, AX, or EAX
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F6 /r |MUL r/m8 |X|X|X|X|X|X|Unsigned multiply (AX � AL * r/m | | | | | | | | | |byte) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F7 /4 |MUL r/m16 |X|X|X|X|X|X|Unsigned multiply (DX:AX � AX * | | | | | | | | | |r/m word) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F7 /4 |MUL r/m32 | | | |X|X|X|Unsigned multiply (EDX:EAX � EAX *| | | | | | | | | |r/m dword) | \------------------------------------------------------------------------------/
The MUL instruction performs unsigned multiplication. Its actions depend on the size of its operand, as follows: �A byte operand is multiplied by the AL value; the result is left in the AX register. The CF and OF flags are cleared if the AH value is 0; otherwise, they are set. �A word operand is multiplied by the AX value; the result is left in the DX :AX register pair. The DX register contains the high-order 16-bits of the product. The CF and OF flags are cleared if the DX value is 0; otherwise, they are set. �A doubleword operand is multiplied by the EAX value and the result is left in the EDX:EAX register. The EDX register contains the high-order 32-bits of the product. The CF and OF flags are cleared if the EDX value is 0; otherwise, they are set.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F6 /r |MUL r/m8 |X|X|X|X|X|X|Unsigned multiply (AX � AL * r/m | | | | | | | | | |byte) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F7 /4 |MUL r/m16 |X|X|X|X|X|X|Unsigned multiply (DX:AX � AX * | | | | | | | | | |r/m word) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F7 /4 |MUL r/m32 | | | |X|X|X|Unsigned multiply (EDX:EAX � EAX *| | | | | | | | | |r/m dword) | \------------------------------------------------------------------------------/ Description The MUL instruction performs unsigned multiplication. Its actions depend on the size of its operand, as follows: �A byte operand is multiplied by the AL value; the result is left in the AX register. The CF and OF flags are cleared if the AH value is 0; otherwise, they are set. �A word operand is multiplied by the AX value; the result is left in the DX :AX register pair. The DX register contains the high-order 16-bits of the product. The CF and OF flags are cleared if the DX value is 0; otherwise, they are set. �A doubleword operand is multiplied by the EAX value and the result is left in the EDX:EAX register. The EDX register contains the high-order 32-bits of the product. The CF and OF flags are cleared if the EDX value is 0; otherwise, they are set. Operation IF byte-size operation THEN AX � AL * r/m8 ELSE (* word or doubleword operation *) IF OperandSize = 16 THEN DX:AX � AX * r/m16 ELSE (* OperandSize = 32 *) EDX:EAX � EAX * r/m32 FI; FI; Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| |* | | |? |? |? |? |* | \-----------------------/ The OF and CF flags are cleared if the upper half of the result is 0; otherwise they are set; the SF, ZF, AF, and PF flags are undefined. Protected Mode Exceptions #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF( fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions NEG-Two's Complement Negation
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F6 /3 |NEG r/m8 |X|X|X|X|X|X|Two's complement negate r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F7 /3 |NEG r/m16 |X|X|X|X|X|X|Two's complement negate r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F7 /3 |NEG r/m32 | | | |X|X|X|Two's complement negate r/m dword | \------------------------------------------------------------------------------/
The NEG instruction replaces the value of a register or memory operand with its two's complement. The operand is subtracted from zero, and the result is placed in the operand. The CF flag is set, unless the operand is zero, in which case the CF flag is cleared.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F6 /3 |NEG r/m8 |X|X|X|X|X|X|Two's complement negate r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F7 /3 |NEG r/m16 |X|X|X|X|X|X|Two's complement negate r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F7 /3 |NEG r/m32 | | | |X|X|X|Two's complement negate r/m dword | \------------------------------------------------------------------------------/ Description The NEG instruction replaces the value of a register or memory operand with its two's complement. The operand is subtracted from zero, and the result is placed in the operand. The CF flag is set, unless the operand is zero, in which case the CF flag is cleared. Operation IF r/m = 0 THEN CF � 0 ELSE CF � 1; FI; r/m � - r/m Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| |* | | |* |* |* |* |* | \-----------------------/ The CF flag is set unless the operand is zero, in which case the CF flag is cleared; the OF, SF, ZF, and PF flags are set according to the result. Protected Mode Exceptions #GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS (0) for an illegal address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in real-address mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions NOP-No Operation
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |90 |NOP |X|X|X|X|X|X|No operation | \------------------------------------------------------------------------------/
The NOP instruction performs no operation. The NOP instruction is a one- byte instruction that takes up space but affects none of the machine context except the (E)IP register. The NOP instruction is an alias mnemonic for the XCHG (E)AX, (E)AX instruction.
Description Flags Affected Protected Mode Exceptions Protected Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |90 |NOP |X|X|X|X|X|X|No operation | \------------------------------------------------------------------------------/ Description The NOP instruction performs no operation. The NOP instruction is a one- byte instruction that takes up space but affects none of the machine context except the (E)IP register. The NOP instruction is an alias mnemonic for the XCHG (E)AX, (E)AX instruction. Related Information Description Flags Affected Protected Mode Exceptions Protected Mode Exceptions Virtual 8086 Mode Exceptions NOT-One's Complement Negation
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F6 /2 |NOT r/m8 |X|X|X|X|X|X|Reverse each bit of r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F7 /2 |NOT r/m16 |X|X|X|X|X|X|Reverse each bit of r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F7 /2 |NOT r/m32 | | | |X|X|X|Reverse each bit of r/m dword | \------------------------------------------------------------------------------/
The NOT instruction inverts the operand; every 1 becomes a 0, and vice versa.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F6 /2 |NOT r/m8 |X|X|X|X|X|X|Reverse each bit of r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F7 /2 |NOT r/m16 |X|X|X|X|X|X|Reverse each bit of r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F7 /2 |NOT r/m32 | | | |X|X|X|Reverse each bit of r/m dword | \------------------------------------------------------------------------------/ Description The NOT instruction inverts the operand; every 1 becomes a 0, and vice versa. Operation r/m � NOT r/m Protected Mode Exceptions #GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS (0) for an illegal address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in real-address mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions OR-Logical Inclusive OR
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0C ib |OR AL,imm8 |X|X|X|X|X|X|OR immediate byte to AL | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0D iw |OR AX,imm16 |X|X|X|X|X|X|OR immediate word to AX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0D id |OR EAX,imm32 | | | |X|X|X|OR immediate dword to EAX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |80 /1 ib |OR r/m8,imm8 |X|X|X|X|X|X|OR immediate byte to r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |81 /1 iw |OR r/m16,imm16 |X|X|X|X|X|X|OR immediate word to r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |81 /1 id |OR r/m32,imm32 | | | |X|X|X|OR immediate dword to r/m dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |83 /1 ib |OR r/m16,imm8 | | | |X|X|X|OR sign-extended immediate byte | | | | | | | | | |with r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |81 /1 ib |OR r/m32,imm8 | | | |X|X|X|OR sign-extended immediate byte | | | | | | | | | |with r/m dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |08 /r |OR r/m8,r8 |X|X|X|X|X|X|OR byte register to r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |09 /r |OR r/m16,r16 |X|X|X|X|X|X|OR word register to r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |09 /r |OR r/m32,r32 | | | |X|X|X|OR dword register to r/m dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0A /r |OR r8,r/m8 |X|X|X|X|X|X|OR byte register to r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0B /r |OR r16,r/m16 |X|X|X|X|X|X|OR word register to r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0B /r |OR r32,r/m32 | | | |X|X|X|OR dword register to r/m dword | \------------------------------------------------------------------------------/
The OR instruction computes the inclusive OR of its two operands and places the result in the first operand. Each bit of the result if 0 if both corresponding bits of the operands are 0; otherwise, each bit is 1.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0C ib |OR AL,imm8 |X|X|X|X|X|X|OR immediate byte to AL | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0D iw |OR AX,imm16 |X|X|X|X|X|X|OR immediate word to AX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0D id |OR EAX,imm32 | | | |X|X|X|OR immediate dword to EAX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |80 /1 ib |OR r/m8,imm8 |X|X|X|X|X|X|OR immediate byte to r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |81 /1 iw |OR r/m16,imm16 |X|X|X|X|X|X|OR immediate word to r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |81 /1 id |OR r/m32,imm32 | | | |X|X|X|OR immediate dword to r/m dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |83 /1 ib |OR r/m16,imm8 | | | |X|X|X|OR sign-extended immediate byte | | | | | | | | | |with r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |81 /1 ib |OR r/m32,imm8 | | | |X|X|X|OR sign-extended immediate byte | | | | | | | | | |with r/m dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |08 /r |OR r/m8,r8 |X|X|X|X|X|X|OR byte register to r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |09 /r |OR r/m16,r16 |X|X|X|X|X|X|OR word register to r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |09 /r |OR r/m32,r32 | | | |X|X|X|OR dword register to r/m dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0A /r |OR r8,r/m8 |X|X|X|X|X|X|OR byte register to r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0B /r |OR r16,r/m16 |X|X|X|X|X|X|OR word register to r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0B /r |OR r32,r/m32 | | | |X|X|X|OR dword register to r/m dword | \------------------------------------------------------------------------------/ Description The OR instruction computes the inclusive OR of its two operands and places the result in the first operand. Each bit of the result if 0 if both corresponding bits of the operands are 0; otherwise, each bit is 1. Operation DEST � DEST OR SRC; CF � 0; OF � 0 Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| |0 | | |* |* |? |* |0 | \-----------------------/ The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result; the AF flag is undefined. Protected Mode Exceptions #GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS (0) for an illegal address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in real-address mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions OUT-Output to Port
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E6 ib |OUT imm8,AL |X|X|X|X|X|X|Output byte from AL to port imm8 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E7 ib |OUT imm8,AX |X|X|X|X|X|X|Output word from AX to port imm8 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E7 ib |OUT imm8,EAX | | | |X|X|X|Output dword from EAX to port imm8| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |EE |OUT DX,AL |X|X|X|X|X|X|Output byte from AL to port number| | | | | | | | | |in DX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |EF |OUT DX,AX |X|X|X|X|X|X|Output word from AX to port number| | | | | | | | | |in DX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |EF |OUT DX,EAX | | | |X|X|X|Output dword from EAX to port | | | | | | | | | |number in DX | \------------------------------------------------------------------------------/
The OUT instruction transfers a data byte or data word from the register ( AL, AX, or EAX) given as the second operand to the output port numbered by the first operand. Output to any port from 0 to 65535 is performed by placing the port number in the DX register and then using an OUT instruction with the DX register as the first operand. If the instruction contains an eight-bit port ID, that value is zero-extended to 16-bits.
Description Flags Affected Notes Operation Protected Mode Exceptions Protected Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E6 ib |OUT imm8,AL |X|X|X|X|X|X|Output byte from AL to port imm8 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E7 ib |OUT imm8,AX |X|X|X|X|X|X|Output word from AX to port imm8 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |E7 ib |OUT imm8,EAX | | | |X|X|X|Output dword from EAX to port imm8| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |EE |OUT DX,AL |X|X|X|X|X|X|Output byte from AL to port number| | | | | | | | | |in DX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |EF |OUT DX,AX |X|X|X|X|X|X|Output word from AX to port number| | | | | | | | | |in DX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |EF |OUT DX,EAX | | | |X|X|X|Output dword from EAX to port | | | | | | | | | |number in DX | \------------------------------------------------------------------------------/ Description The OUT instruction transfers a data byte or data word from the register ( AL, AX, or EAX) given as the second operand to the output port numbered by the first operand. Output to any port from 0 to 65535 is performed by placing the port number in the DX register and then using an OUT instruction with the DX register as the first operand. If the instruction contains an eight-bit port ID, that value is zero-extended to 16-bits. Operation IF (PE = 1) AND ((VM = 1) OR (CPL > IOPL)) THEN (* Virtual 8086 mode, or protected mode with CPL > IOPL *) IF NOT I-O-Permission (DEST, width(DEST)) THEN #GP(0); FI; FI; [DEST] � SRC; (* I/O address space used *) Protected Mode Exceptions #GP(0) if the current privilege level is higher (has less privilege) than the I/O privilege level and any of the corresponding I/O permission bits in the TSS equals 1. Virtual 8086 Mode Exceptions #GP(0) fault if any of the corresponding I/O permission bits in the TSS equals 1. Notes After the OUT or OUTS instructions are run, the Pentium processor ensures that the EWBE# has been sampled active before beginning to run the next instruction. Note that the instruction may be prefetched if EWBE# is not active, but it will not run until EWBE# is sampled active. Related Information Description Flags Affected Notes Operation Protected Mode Exceptions Protected Mode Exceptions Virtual 8086 Mode Exceptions OUTS/OUTSB/OUTSW/OUTSD-Output String to Port
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |6E |OUTS DX,r/m8 | |X|X|X|X|X|Output byte [(E)SI] to port in DX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |6F |OUTS DX,r/m16 | |X|X|X|X|X|Output word [(E)SI] to port in DX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |6F |OUTS DX,r/m32 | | | |X|X|X|Output dword [(E)SI] to port in DX| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |6E |OUTSB | |X|X|X|X|X|Output byte [DS:(E)SI] to port in | | | | | | | | | |DX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |6F |OUTSW | |X|X|X|X|X|Output word [DS:(E)SI] to port in | | | | | | | | | |DX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |6F |OUTSD | | | |X|X|X|Output dword [DS:(E)SI] to port in| | | | | | | | | |DX | \------------------------------------------------------------------------------/
The OUTS instruction transfers data from the memory byte, word, or doubleword at the source-index register to the output port addressed by the DX register. If the address-size attribute for this instruction is 16-bits, the SI register is used for the source-index register; otherwise, the address-size attribute is 32-bits, and the ESI register is used for the source-index register. The OUTS instruction does not allow specification of the port number as an immediate value. The port must be addressed through the DX register value. Load the correct value into the DX register before running the OUTS instruction. The address of the source data is determined by the contents of source- index register. Load the correct index value into the SI or ESI register before running the OUTS instruction. After the transfer, source-index register is advanced automatically. If the DF flag is 0 (the CLD instruction was run), the source-index register is incremented; if the DF flag is 1 (the STD instruction was run), it is decremented. The amount of the increment or decrement is 1 if a byte is output, 2 if a word is output, or 4 if a doubleword is output. The OUTSB, OUTSW, and OUTSD instructions are synonyms for the byte, word, and doubleword OUTS instructions. The OUTS instruction can be preceded by the REP prefix for block output of ECX bytes or words. Refer to the REP instruction for details on this operation.
Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |6E |OUTS DX,r/m8 | |X|X|X|X|X|Output byte [(E)SI] to port in DX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |6F |OUTS DX,r/m16 | |X|X|X|X|X|Output word [(E)SI] to port in DX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |6F |OUTS DX,r/m32 | | | |X|X|X|Output dword [(E)SI] to port in DX| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |6E |OUTSB | |X|X|X|X|X|Output byte [DS:(E)SI] to port in | | | | | | | | | |DX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |6F |OUTSW | |X|X|X|X|X|Output word [DS:(E)SI] to port in | | | | | | | | | |DX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |6F |OUTSD | | | |X|X|X|Output dword [DS:(E)SI] to port in| | | | | | | | | |DX | \------------------------------------------------------------------------------/ Description The OUTS instruction transfers data from the memory byte, word, or doubleword at the source-index register to the output port addressed by the DX register. If the address-size attribute for this instruction is 16-bits, the SI register is used for the source-index register; otherwise, the address-size attribute is 32-bits, and the ESI register is used for the source-index register. The OUTS instruction does not allow specification of the port number as an immediate value. The port must be addressed through the DX register value. Load the correct value into the DX register before running the OUTS instruction. The address of the source data is determined by the contents of source- index register. Load the correct index value into the SI or ESI register before running the OUTS instruction. After the transfer, source-index register is advanced automatically. If the DF flag is 0 (the CLD instruction was run), the source-index register is incremented; if the DF flag is 1 (the STD instruction was run), it is decremented. The amount of the increment or decrement is 1 if a byte is output, 2 if a word is output, or 4 if a doubleword is output. The OUTSB, OUTSW, and OUTSD instructions are synonyms for the byte, word, and doubleword OUTS instructions. The OUTS instruction can be preceded by the REP prefix for block output of ECX bytes or words. Refer to the REP instruction for details on this operation. Operation IF AddressSize = 16 THEN use SI for source-index; ELSE (* AddressSize = 32 *) use ESI for source-index; FI; IF (PE = 1) AND ((VM = 1) OR (CPL > IOPL)) THEN (* Virtual 8086 mode, or protected mode with CPL > IOPL *) IF NOT I-O-Permission (DEST, width(DEST)) THEN #GP(0); FI; FI; IF byte type of instruction THEN [DX] � [source-index]; (* Write byte at DX I/O address *) IF DF = 0 THEN IncDec � 1 ELSE IncDec � -1; FI; FI; IF OperandSize = 16 THEN [DX] � [source-index]; (* Write word at DX I/O address *) IF DF = 0 THEN IncDec � 2 ELSE IncDec � -2; FI; FI; IF OperandSize = 32 THEN [DX] � [source-index]; (* Write dword at DX I/O address *) IF DF = THEN IncDec � 4 ELSE IncDec � -4; FI; FI; FI; source-index � source-index + IncDec; Protected Mode Exceptions #GP(0) if the current privilege level is greater than the I/O privilege level and any of the corresponding I/O permission bits in TSS equals 1; #GP (0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault- code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions #GP(0) fault if any of the corresponding I/O permission bits in TSS equals 1; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Notes After the OUT or OUTS instructions are run, the Pentium processor ensures that the EWBE# has been sampled active before beginning to run the next instruction. Note that the instruction may be prefetched if EWBE# is not active, but it will not run until EWBE# is sampled active. Related Information Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions POP-Pop a Word from the Stack
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |58+rw |POP r16 |X|X|X|X|X|X|Pop top of stack into word | | | | | | | | | |register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |58+rd |POP r32 | | | |X|X|X|Pop top of stack into dword | | | | | | | | | |register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |8F /0 |POP m16 |X|X|X|X|X|X|Pop top of stack into memory word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |8F /0 |POP m32 | | | |X|X|X|Pop top of stack into memory dword| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |1F |POP DS |X|X|X|X|X|X|Pop top of stack into DS | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |07 |POP ES |X|X|X|X|X|X|Pop top of stack into ES | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F A1 |POP FS | | | |X|X|X|Pop top of stack into FS | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F A9 |POP GS | | | |X|X|X|Pop top of stack into GS | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |17 |POP SS |X|X|X|X|X|X|Pop top of stack into SS | \------------------------------------------------------------------------------/
The POP instruction replaces the previous contents of the memory, the register, or the segment register operand with the word on the top of the processor stack, addressed by SS:SP (address-size attribute of 16 bits) or SS:ESP (address-size attribute of 32 bits). The stack pointer SP is incremented by 2 for an operand-size of 16 bits or by 4 for an operand-size of 32 bits. It then points to the new top of stack. The POP CS instruction is not a processor instruction. Popping from the stack into the CS register is accomplished with a RET instruction. If the destination operand is a segment register (DS, ES, FS, GS, or SS), the value popped must be a selector. In protected mode, loading the selector initiates automatic loading of the descriptor information associated with that selector into the hidden part of the segment register; loading also initiates validation of both the selector and the descriptor information. A null value (0000-0003) may be popped into the DS, ES, FS, or GS register without causing a protection exception. An attempt to reference a segment whose corresponding segment register is loaded with a null value causes a # GP(0) exception. No memory reference occurs. The saved value of the segment register is null. A POP SS instruction inhibits all interrupts, including NMI, until after processing of the next instruction. This allows sequential processing of POP SS and MOV eSP, eBP instructions without danger of having an invalid stack during an interrupt. However, use of the LSS instruction is the preferred method of loading the SS and eSP registers. A POP-to-memory instruction, which uses the stack pointer (ESP) as a base register, references memory after the POP. The base used is the value of the ESP after the instruction runs. Loading a segment register while in protected mode results in special checks and actions, as described in the following listing: IF SS is loaded: IF selector is null THEN #GP(0); Selector index must be within its descriptor table limits ELSE #GP(selector); Selector's RPL must equal CPL ELSE #GP(selector); AR byte must indicate a writable data segment ELSE #GP(selector); DPL in the AR byte must equal CPL ELSE #GP(selector); Segment must be marked present ELSE #SS(selector); Load SS register with selector; Load SS register with descriptor; IF DS, ES, FS or GS is loaded with non-null selector: AR byte must indicate data or readable code segment ELSE #GP(selector); IF data or nonconforming code THEN both the RPL and the CPL must be less than or equal to DPL in AR byte ELSE #GP(selector); FI; Segment must be marked present ELSE #NP(selector); Load segment register with selector; Load segment register with descriptor; IF DS, ES, FS, or GS is loaded with a null selector: Load segment register with selector Clear valid bit in invisible portion of register
Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |58+rw |POP r16 |X|X|X|X|X|X|Pop top of stack into word | | | | | | | | | |register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |58+rd |POP r32 | | | |X|X|X|Pop top of stack into dword | | | | | | | | | |register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |8F /0 |POP m16 |X|X|X|X|X|X|Pop top of stack into memory word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |8F /0 |POP m32 | | | |X|X|X|Pop top of stack into memory dword| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |1F |POP DS |X|X|X|X|X|X|Pop top of stack into DS | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |07 |POP ES |X|X|X|X|X|X|Pop top of stack into ES | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F A1 |POP FS | | | |X|X|X|Pop top of stack into FS | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F A9 |POP GS | | | |X|X|X|Pop top of stack into GS | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |17 |POP SS |X|X|X|X|X|X|Pop top of stack into SS | \------------------------------------------------------------------------------/ Description The POP instruction replaces the previous contents of the memory, the register, or the segment register operand with the word on the top of the processor stack, addressed by SS:SP (address-size attribute of 16 bits) or SS:ESP (address-size attribute of 32 bits). The stack pointer SP is incremented by 2 for an operand-size of 16 bits or by 4 for an operand-size of 32 bits. It then points to the new top of stack. The POP CS instruction is not a processor instruction. Popping from the stack into the CS register is accomplished with a RET instruction. If the destination operand is a segment register (DS, ES, FS, GS, or SS), the value popped must be a selector. In protected mode, loading the selector initiates automatic loading of the descriptor information associated with that selector into the hidden part of the segment register; loading also initiates validation of both the selector and the descriptor information. A null value (0000-0003) may be popped into the DS, ES, FS, or GS register without causing a protection exception. An attempt to reference a segment whose corresponding segment register is loaded with a null value causes a # GP(0) exception. No memory reference occurs. The saved value of the segment register is null. A POP SS instruction inhibits all interrupts, including NMI, until after processing of the next instruction. This allows sequential processing of POP SS and MOV eSP, eBP instructions without danger of having an invalid stack during an interrupt. However, use of the LSS instruction is the preferred method of loading the SS and eSP registers. A POP-to-memory instruction, which uses the stack pointer (ESP) as a base register, references memory after the POP. The base used is the value of the ESP after the instruction runs. Loading a segment register while in protected mode results in special checks and actions, as described in the following listing: IF SS is loaded: IF selector is null THEN #GP(0); Selector index must be within its descriptor table limits ELSE #GP(selector); Selector's RPL must equal CPL ELSE #GP(selector); AR byte must indicate a writable data segment ELSE #GP(selector); DPL in the AR byte must equal CPL ELSE #GP(selector); Segment must be marked present ELSE #SS(selector); Load SS register with selector; Load SS register with descriptor; IF DS, ES, FS or GS is loaded with non-null selector: AR byte must indicate data or readable code segment ELSE #GP(selector); IF data or nonconforming code THEN both the RPL and the CPL must be less than or equal to DPL in AR byte ELSE #GP(selector); FI; Segment must be marked present ELSE #NP(selector); Load segment register with selector; Load segment register with descriptor; IF DS, ES, FS, or GS is loaded with a null selector: Load segment register with selector Clear valid bit in invisible portion of register Operation IF StackAddrSize = 16 THEN IF OperandSize = 16 THEN DEST � (SS:SP); (* copy a word *) SP � SP + 2; ELSE (* OperandSize = 32 *) DEST � (SS:SP); (* copy a dword *) SP � SP + 4; FI; ELSE (* StackAddrSize = 32 *) IF OperandSize = 16 THEN DEST � (SS:ESP); (* copy a word *) ESP � ESP + 2; ELSE (* OperandSize = 32 *) DEST � (SS:ESP); (* copy a dword *) ESP � ESP + 4; FI; FI; Protected Mode Exceptions #GP, #SS, and #NP if a segment register is being loaded, #SS(0) if the current top of stack is not within the stack segment; #GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in real-address mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Notes Back-to-back PUSH/POP instruction sequences are allowed without incurring an additional clock. The stack segment descriptor's B bit will determine the size of Stack Addr Size. Pop ESP instructions increments the stack pointer (ESP) before data at the old top of stack is written into the destination. Related Information Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions POPA/POPAD-Pop all General Registers
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |61 |POPA | |X|X|X|X|X|Pop DI, SI, BP, BX, DX, CX, and AX| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |61 |POPAD | | | |X|X|X|Pop EDI, ESI, EBP, EBX, EDX, ECX, | | | | | | | | | |and EAX | \------------------------------------------------------------------------------/
The POPA instruction pops the eight 16-bit general registers. However, the SP value is discarded instead of loaded into the SP register. The POPA instruction reverses a previous PUSHA instruction, restoring the general registers to their values before the PUSHA instruction was run. The first register popped is the DI register. The POPAD instruction pops the eight 32-bit general registers. The ESP value is discarded instead of loaded into the ESP register. The POPAD instruction reverses the previous PUSHAD instruction, restoring the general registers to their values before the PUSHAD instruction was run. The first register popped is the EDI register.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |61 |POPA | |X|X|X|X|X|Pop DI, SI, BP, BX, DX, CX, and AX| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |61 |POPAD | | | |X|X|X|Pop EDI, ESI, EBP, EBX, EDX, ECX, | | | | | | | | | |and EAX | \------------------------------------------------------------------------------/ Description The POPA instruction pops the eight 16-bit general registers. However, the SP value is discarded instead of loaded into the SP register. The POPA instruction reverses a previous PUSHA instruction, restoring the general registers to their values before the PUSHA instruction was run. The first register popped is the DI register. The POPAD instruction pops the eight 32-bit general registers. The ESP value is discarded instead of loaded into the ESP register. The POPAD instruction reverses the previous PUSHAD instruction, restoring the general registers to their values before the PUSHAD instruction was run. The first register popped is the EDI register. Operation IF OperandSize = 16 (* instruction = POPA *) THEN DI � Pop(); SI � Pop(); BP � Pop(); increment SP by 2 (* skip next 2 bytes of stack *) BX � Pop(); DX � Pop(); CX � Pop(); AX � Pop(); ELSE (* OperandSize = 32, instruction = POPAD *) EDI � Pop(); ESI � Pop(); EBP � Pop(); increment SP by 4 (* skip next 4 bytes of stack *) EBX � Pop(); EDX � Pop(); ECX � Pop(); EAX � Pop(); FI; Protected Mode Exceptions #SS(0) if the starting or ending stack address is not within the stack segment; #PF(fault-code) for a page fault. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in real-address mode; #PF(fault-code) for a page fault. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions POPF/POPFD-Pop Stack into FLAGS or EFLAGS Register
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9D |POPF |X|X|X|X|X|X|Pop top of stack into FLAGS | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9D |POPFD | | | |X|X|X|Pop top of stack into EFLAGS | \------------------------------------------------------------------------------/
The POPF and POPFD instructions pop the word or doubleword on the top of the stack and store the value in the FLAGS register. If the operand-size attribute of the instruction is 16 bits, then a word is popped and the value is stored in the FLAGS register. If the operand-size attribute is 32 bits, then a doubleword is popped and the value is stored in the EFLAGS register. When the IOPL is less than 3 in virtual-8086 mode, the POPF instruction causes a general protection exception. When the IOPL is equal to 3 while running in virtual-8086 mode, POPF pops a word into the FLAGS register. Refer to the Intel documentation for information about the FLAGS and EFLAGS registers. Note that bits 16 and 17 of the EFLAGS register, called the VM and RF flags, respectively, are not affected by the POPF or POPFD instruction. The I/O privilege level is altered only when running at privilege level 0. The interrupt flag is altered only when running at a level at least as privileged as the I/O privilege level. (Real-address mode is equivalent to privilege level 0.) If a POPF instruction is run with insufficient privilege, an exception does not occur, but the privileged bits do not change.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9D |POPF |X|X|X|X|X|X|Pop top of stack into FLAGS | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9D |POPFD | | | |X|X|X|Pop top of stack into EFLAGS | \------------------------------------------------------------------------------/ Description The POPF and POPFD instructions pop the word or doubleword on the top of the stack and store the value in the FLAGS register. If the operand-size attribute of the instruction is 16 bits, then a word is popped and the value is stored in the FLAGS register. If the operand-size attribute is 32 bits, then a doubleword is popped and the value is stored in the EFLAGS register. When the IOPL is less than 3 in virtual-8086 mode, the POPF instruction causes a general protection exception. When the IOPL is equal to 3 while running in virtual-8086 mode, POPF pops a word into the FLAGS register. Refer to the Intel documentation for information about the FLAGS and EFLAGS registers. Note that bits 16 and 17 of the EFLAGS register, called the VM and RF flags, respectively, are not affected by the POPF or POPFD instruction. The I/O privilege level is altered only when running at privilege level 0. The interrupt flag is altered only when running at a level at least as privileged as the I/O privilege level. (Real-address mode is equivalent to privilege level 0.) If a POPF instruction is run with insufficient privilege, an exception does not occur, but the privileged bits do not change. Operation IF VM=0 (* Not in Virtual-8086 Mode *) THEN IF OperandSize=32; THEN EFLAGS � Pop() AND 277FD7H; ELSE FLAGE � Pop(); FI; ELSE (* In Virtual-8086 Mode *) IF IOPL=3 THEN IF OperandSize=32 THEN TempEflags � Pop(); EFLAGS � ((EFLAGS AND 1B3000H) OR (TempEflags AND ~ 1B3000H)) (* VM, RF, IOPL, VIP, and VIF of EGLAGS bits are not modified by POPFD *) ELSE FLAGS � Pop() FI; ELSE #GP(0); (* trap to virtual-8086 monitor *) FI; FI; Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| |* |* |* |* |* |* |* |* | \-----------------------/ All flags except the VM, RF, IOPL, VIF and VIP flags. Protected Mode Exceptions #SS(0) if the top of stack is not within the stack segment. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions #GP(0) fault if the I/O privilege level is less than 3 in order to permit emulation. #GP(0) if an attempt is made to run POPF with an operand-size override prefix. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions PUSH-Push Operand onto the Stack
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |50+rw |PUSH r16 |X|X|X|X|X|X|Push register word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |50+rd |PUSH r32 | | | |X|X|X|Push register dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /6 |PUSH m16 |X|X|X|X|X|X|Push memory word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /6 |PUSH m32 | | | |X|X|X|Push memory dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |6A |PUSH imm8 | |X|X|X|X|X|Push immediate byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |68 |PUSH imm16 | |X|X|X|X|X|Push immediate word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |68 |PUSH imm32 | | | |X|X|X|Push immediate dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0E |PUSH CS |X|X|X|X|X|X|Push CS | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |1E |PUSH DS |X|X|X|X|X|X|Push DS | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |06 |PUSH ES |X|X|X|X|X|X|Push ES | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F A0 |PUSH FS | | | |X|X|X|Push FS | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F A8 |PUSH GS | | | |X|X|X|Push GS | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |16 |PUSH SS |X|X|X|X|X|X|Push SS | \------------------------------------------------------------------------------/
The PUSH instruction decrements the stack pointer by 2 if the operand-size attribute of the instruction is 16 bits; otherwise, it decrements the stack pointer by 4. The PUSH instruction then places the operand on the new top of stack, which is pointed to by the stack pointer. The PUSH ESP instruction pushes the value of the ESP register as it existed before the instruction. This differs from the 8086, where the PUSH SP instruction pushes the new value (decremented by 2). Likewise, a PUSH-from-memory instruction, which uses the stack pointer (ESP ) as a base register, references memory before the PUSH. The base used is the value of the ESP before the instruction runs.
Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |50+rw |PUSH r16 |X|X|X|X|X|X|Push register word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |50+rd |PUSH r32 | | | |X|X|X|Push register dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /6 |PUSH m16 |X|X|X|X|X|X|Push memory word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FF /6 |PUSH m32 | | | |X|X|X|Push memory dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |6A |PUSH imm8 | |X|X|X|X|X|Push immediate byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |68 |PUSH imm16 | |X|X|X|X|X|Push immediate word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |68 |PUSH imm32 | | | |X|X|X|Push immediate dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0E |PUSH CS |X|X|X|X|X|X|Push CS | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |1E |PUSH DS |X|X|X|X|X|X|Push DS | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |06 |PUSH ES |X|X|X|X|X|X|Push ES | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F A0 |PUSH FS | | | |X|X|X|Push FS | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F A8 |PUSH GS | | | |X|X|X|Push GS | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |16 |PUSH SS |X|X|X|X|X|X|Push SS | \------------------------------------------------------------------------------/ Description The PUSH instruction decrements the stack pointer by 2 if the operand-size attribute of the instruction is 16 bits; otherwise, it decrements the stack pointer by 4. The PUSH instruction then places the operand on the new top of stack, which is pointed to by the stack pointer. The PUSH ESP instruction pushes the value of the ESP register as it existed before the instruction. This differs from the 8086, where the PUSH SP instruction pushes the new value (decremented by 2). Likewise, a PUSH-from-memory instruction, which uses the stack pointer (ESP ) as a base register, references memory before the PUSH. The base used is the value of the ESP before the instruction runs. Operation IF StackAddrSize = 16 THEN IF OperandSize = 16 THEN SP � SP - 2; (SS:SP) � (SOURCE); (* word assignment *) ELSE SP � SP - 4; (SS:SP) � (SOURCE); (* dword assignment *) FI; ELSE (* StackAddrSize = 32 *) IF OperandSize = 16 THEN ESP � ESP -2; (SS:ESP) � (SOURCE); (* word assignment *) ELSE ESP � ESP -4; (SS:ESP) � (SOURCE); (* dword assignment *) FI; FI; Protected Mode Exceptions #SS(0) if the new value of the SP or ESP register is outside the stack segment limit; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions None; if the SO or ESP register is 1, the processor shuts down due to a lack of stack space. Virtual 8086 Mode Exceptions Same exceptions as in real-address mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Notes When used with an operand in memory, the PUSH instruction takes longer to run than a two-instruction sequence, which moves the operand through a register. Back-to-back PUSH/POP instruction sequences are allowed without incurring an additional clock. Selective pushes write only the top of the stack. Related Information Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions PUSHA/PUSHAD-Push all General Registers
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |60 |PUSHA | | |X|X|X|X|Push AX, CX, DX, BX, SP, BP, SI, | | | | | | | | | |and DI | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |60 |PUSHAD | | | |X|X|X|Push EAX, ECX, EDX, EBX, ESP, EBP,| | | | | | | | | |ESI, and EDI | \------------------------------------------------------------------------------/
The PUSHA and PUSHAD instructions save the 16-bit or 32-bit general registers, respectively, on the processor stack. The PUSHA instruction decrements the stack pointer (SP) by 16 to hold the eight word values. The PUSHAD instruction decrements the stack pointer (ESP) by 32 to hold the eight doubleword values. Because the registers are pushed onto the stack in the order in which they were given, they appear in the 16 or 32 new stack bytes in reverse order. The last register pushed is the DI or EDI register.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |60 |PUSHA | | |X|X|X|X|Push AX, CX, DX, BX, SP, BP, SI, | | | | | | | | | |and DI | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |60 |PUSHAD | | | |X|X|X|Push EAX, ECX, EDX, EBX, ESP, EBP,| | | | | | | | | |ESI, and EDI | \------------------------------------------------------------------------------/ Description The PUSHA and PUSHAD instructions save the 16-bit or 32-bit general registers, respectively, on the processor stack. The PUSHA instruction decrements the stack pointer (SP) by 16 to hold the eight word values. The PUSHAD instruction decrements the stack pointer (ESP) by 32 to hold the eight doubleword values. Because the registers are pushed onto the stack in the order in which they were given, they appear in the 16 or 32 new stack bytes in reverse order. The last register pushed is the DI or EDI register. Operation IF OperandSize = 16 (* PUSHA instruction *) THEN Temp � (SP); Push(AX); Push(CX); Push(DX); Push(BX); Push(Temp); Push(BP); Push(SI); Push(DI); ELSE (* OperandSize = 31, PUSHAD instruction *) Temp � (ESP); Push(EAX); Push(ECX); Push(EDX); Push(EBX); Push(Temp); Push(EPS); Push(ESI); Push(EDI); FI; Protected Mode Exceptions #SS(0) if the starting or ending stack address is outside the stack segment limit; #PF(fault-code) for a page fault. Real Address Mode Exceptions Before running the PUSHA or PUSHAD instruction, the Pentium processor shuts down if the SP or ESP register equals 1, 3, or 5; if the SP or ESP register equals 7, 9, 11, 13, or 15, exception 13 occurs. Virtual 8086 Mode Exceptions Same exceptions as in real-address mode; #PF(fault-code) for a page fault. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions PUSHF/PUSHFD-Push Flags Register onto the Stack
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9C |PUSHF |X|X|X|X|X|X|Push FLAGS | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9C |PUSHFD | | | |X|X|X|Push EFLAGS | \------------------------------------------------------------------------------/
The PUSHF instruction decrements the stack pointer by 2 and copies the FLAGS register to the new top of stack; the PUSHFD instruction decrements the stack pointer by 4, and the EFLAGS register is copied to the new top of stack, which is pointed to by SS:ESP. Refer to the Intel documentation for information on the EFLAGS register.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9C |PUSHF |X|X|X|X|X|X|Push FLAGS | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9C |PUSHFD | | | |X|X|X|Push EFLAGS | \------------------------------------------------------------------------------/ Description The PUSHF instruction decrements the stack pointer by 2 and copies the FLAGS register to the new top of stack; the PUSHFD instruction decrements the stack pointer by 4, and the EFLAGS register is copied to the new top of stack, which is pointed to by SS:ESP. Refer to the Intel documentation for information on the EFLAGS register. Operation IF VM=0 (* Not in Virtual-8086 Mode *) THEN IF OperandSize = 32 THEN push(EFLAGS AND 0FCFFFFH); (* VM and RF EFLAG bits are cleared *) ELSE push(FLAGS); FI; ELSE (* In Virtual-8086 Mode *) IF IOPL=3 THEN IF OperandSize = 32 THEN push(EFLAGS AND 0FCFFFFH); (* VM and RF EFLAGS bits are cleared *) ELSE push(FLAGS); FI; ELSE #GP(0); (* Trap to virtual-8086 monitor *) FI; FI; Protected Mode Exceptions #SS(0) if the new value of the ESP register is outside the stack segment boundaries. Real Address Mode Exceptions None; the processor shuts down due to a lack of stack space. Virtual 8086 Mode Exceptions #GP(0) fault if the I/O privilege level is less than 3, to permit emulation . Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions RCL/RCR/ROL/ROR-Rotate
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D0 /2 |RCL r/m8,1 |X|X|X|X|X|X|Rotate 9 bits (CF, r/m byte) left | | | | | | | | | |once | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D2 /2 |RCL r/m8,CL |X|X|X|X|X|X|Rotate 9 bits (CF, r/m byte) left | | | | | | | | | |CL times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C0 /2 ib |RCL r/m8,imm8 | |X|X|X|X|X|Rotate 9 bits (CF, r/m byte) left | | | | | | | | | |imm8 times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D1 /2 |RCL r/m16,1 |X|X|X|X|X|X|Rotate 17 bits (CF, r/m word) left| | | | | | | | | |once | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D3 /2 |RCL r/m16,CL |X|X|X|X|X|X|Rotate 17 bits (CF, r/m word) left| | | | | | | | | |CL times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C1 /2 ib |RCL r/m16,imm8 | |X|X|X|X|X|Rotate 17 bits (CF, r/m word) left| | | | | | | | | |imm8 times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D1 /2 |RCL r/m32,1 | | | |X|X|X|Rotate 33 bits (CF, r/m dword) | | | | | | | | | |left once | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D3 /2 |RCL r/m32,CL | | | |X|X|X|Rotate 33 bits (CF, r/m dword) | | | | | | | | | |left CL times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C1 /2 ib |RCL r/m32,imm8 | | | |X|X|X|Rotate 33 bits (CF, r/m dword) | | | | | | | | | |left imm8 times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D0 /3 |RCR r/m8,1 |X|X|X|X|X|X|Rotate 9 bits (CF, r/m byte) right| | | | | | | | | |once | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D2 /3 |RCR r/m8,CL |X|X|X|X|X|X|Rotate 9 bits (CF, r/m byte) right| | | | | | | | | |CL times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C0 /3 ib |RCR r/m8,imm8 | |X|X|X|X|X|Rotate 9 bits (CF, r/m byte) right| | | | | | | | | |imm8 times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D1 /3 |RCR r/m16,1 |X|X|X|X|X|X|Rotate 17 bits (CF, r/m word) | | | | | | | | | |right once | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D3 /3 |RCR r/m16,CL |X|X|X|X|X|X|Rotate 17 bits (CF, r/m word) | | | | | | | | | |right CL times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C1 /3 ib |RCR r/m16,imm8 | |X|X|X|X|X|Rotate 17 bits (CF, r/m word) | | | | | | | | | |right imm8 times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D1 /3 |RCR r/m32,1 | | | |X|X|X|Rotate 33 bits (CF, r/m dword) | | | | | | | | | |right once | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D3 /3 |RCR r/m32,CL | | | |X|X|X|Rotate 33 bits (CF, r/m dword) | | | | | | | | | |right CL times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C1 /3 ib |RCR r/m32,imm8 | | | |X|X|X|Rotate 33 bits (CF, r/m dword) | | | | | | | | | |right imm8 times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D0 /0 |ROL r/m8,1 |X|X|X|X|X|X|Rotate 8 bits (r/m byte) left once| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D2 /0 |ROL r/m8,CL |X|X|X|X|X|X|Rotate 8 bits (r/m byte) left CL | | | | | | | | | |times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C0 /0 ib |ROL r/m8,imm8 | |X|X|X|X|X|Rotate 8 bits (r/m byte) left imm8| | | | | | | | | |times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D1 /0 |ROL r/m16,1 |X|X|X|X|X|X|Rotate 16 bits (r/m word) left | | | | | | | | | |once | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D3 /0 |ROL r/m16,CL |X|X|X|X|X|X|Rotate 16 bits (r/m word) left CL | | | | | | | | | |times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C1 /0 ib |ROL r/m16,imm8 | |X|X|X|X|X|Rotate 16 bits (r/m word) left | | | | | | | | | |imm8 times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D1 /0 |ROL r/m32,1 | | | |X|X|X|Rotate 32 bits (r/m dword) left | | | | | | | | | |once | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D3 /0 |ROL r/m32,CL | | | |X|X|X|Rotate 32 bits (r/m dword) left CL| | | | | | | | | |times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C1 /0 ib |ROL r/m32,imm8 | | | |X|X|X|Rotate 32 bits (r/m dword) left | | | | | | | | | |imm8 times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D0 /1 |ROR r/m8,1 |X|X|X|X|X|X|Rotate 8 bits (r/m byte) right | | | | | | | | | |once | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D2 /1 |ROR r/m8,CL |X|X|X|X|X|X|Rotate 8 bits (r/m byte) right CL | | | | | | | | | |times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C0 /1 ib |ROR r/m8,imm8 | |X|X|X|X|X|Rotate 8 bits (r/m byte) right | | | | | | | | | |imm8 times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D1 /1 |ROR r/m16,1 |X|X|X|X|X|X|Rotate 16 bits (r/m word) right | | | | | | | | | |once | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D3 /1 |ROR r/m16,CL |X|X|X|X|X|X|Rotate 16 bits (r/m word) right CL| | | | | | | | | |times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C1 /1 ib |ROR r/m16,imm8 | |X|X|X|X|X|Rotate 16 bits (r/m word) right | | | | | | | | | |imm8 times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D1 /1 |ROR r/m32,1 | | | |X|X|X|Rotate 32 bits (r/m dword) right | | | | | | | | | |once | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D3 /1 |ROR r/m32,CL | | | |X|X|X|Rotate 32 bits (r/m dword) right | | | | | | | | | |CL times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C1 /1 ib |ROR r/m32,imm8 | | | |X|X|X|Rotate 32 bits (r/m dword) right | | | | | | | | | |imm8 times | \------------------------------------------------------------------------------/
Each rotate instruction shifts the bits of the register or memory operand given. The left rotate instructions shift all the bits upward, except for the top bit, which is returned to the bottom. The right rotate instructions do the reverse: the bits shift downward until the bottom bit arrives at the top. For the RCL and RCR instructions, the CF flag is part of the rotated quantity. The RCL instruction shifts the CF flag into the bottom bit and shifts the top bit into the CF flag; the RCR instruction shifts the CF flag into the top bit and shifts the bottom bit into the CF flag. For the ROL and ROR instructions, the original value of the CF flag is not a part of the result, but the CF flag receives a copy of the bit that was shifted from one end to the other. The rotate is repeated the number of times indicated by the second operand, which is either an immediate number or the contents of the CL register. To reduce the maximum instruction processing time, the Pentium processor does not allow rotation counts greater than 31. If a rotation count greater than 31 is attempted, only the bottom five bits of the rotation are used. The 8086 does not mask rotation counts. The Pentium processor in Virtual 8086 Mode does mask rotation counts. The OF flags is defined only for the single-rotate forms of the instructions (second operand is a 1). It is undefined in all other cases. For left shifts/rotates, the CF bit after the shift is XORed with the high- order result bit. For right shifts/rotates, the high-order two bits of the result are XORed to get the OF flag.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D0 /2 |RCL r/m8,1 |X|X|X|X|X|X|Rotate 9 bits (CF, r/m byte) left | | | | | | | | | |once | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D2 /2 |RCL r/m8,CL |X|X|X|X|X|X|Rotate 9 bits (CF, r/m byte) left | | | | | | | | | |CL times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C0 /2 ib |RCL r/m8,imm8 | |X|X|X|X|X|Rotate 9 bits (CF, r/m byte) left | | | | | | | | | |imm8 times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D1 /2 |RCL r/m16,1 |X|X|X|X|X|X|Rotate 17 bits (CF, r/m word) left| | | | | | | | | |once | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D3 /2 |RCL r/m16,CL |X|X|X|X|X|X|Rotate 17 bits (CF, r/m word) left| | | | | | | | | |CL times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C1 /2 ib |RCL r/m16,imm8 | |X|X|X|X|X|Rotate 17 bits (CF, r/m word) left| | | | | | | | | |imm8 times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D1 /2 |RCL r/m32,1 | | | |X|X|X|Rotate 33 bits (CF, r/m dword) | | | | | | | | | |left once | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D3 /2 |RCL r/m32,CL | | | |X|X|X|Rotate 33 bits (CF, r/m dword) | | | | | | | | | |left CL times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C1 /2 ib |RCL r/m32,imm8 | | | |X|X|X|Rotate 33 bits (CF, r/m dword) | | | | | | | | | |left imm8 times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D0 /3 |RCR r/m8,1 |X|X|X|X|X|X|Rotate 9 bits (CF, r/m byte) right| | | | | | | | | |once | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D2 /3 |RCR r/m8,CL |X|X|X|X|X|X|Rotate 9 bits (CF, r/m byte) right| | | | | | | | | |CL times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C0 /3 ib |RCR r/m8,imm8 | |X|X|X|X|X|Rotate 9 bits (CF, r/m byte) right| | | | | | | | | |imm8 times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D1 /3 |RCR r/m16,1 |X|X|X|X|X|X|Rotate 17 bits (CF, r/m word) | | | | | | | | | |right once | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D3 /3 |RCR r/m16,CL |X|X|X|X|X|X|Rotate 17 bits (CF, r/m word) | | | | | | | | | |right CL times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C1 /3 ib |RCR r/m16,imm8 | |X|X|X|X|X|Rotate 17 bits (CF, r/m word) | | | | | | | | | |right imm8 times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D1 /3 |RCR r/m32,1 | | | |X|X|X|Rotate 33 bits (CF, r/m dword) | | | | | | | | | |right once | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D3 /3 |RCR r/m32,CL | | | |X|X|X|Rotate 33 bits (CF, r/m dword) | | | | | | | | | |right CL times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C1 /3 ib |RCR r/m32,imm8 | | | |X|X|X|Rotate 33 bits (CF, r/m dword) | | | | | | | | | |right imm8 times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D0 /0 |ROL r/m8,1 |X|X|X|X|X|X|Rotate 8 bits (r/m byte) left once| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D2 /0 |ROL r/m8,CL |X|X|X|X|X|X|Rotate 8 bits (r/m byte) left CL | | | | | | | | | |times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C0 /0 ib |ROL r/m8,imm8 | |X|X|X|X|X|Rotate 8 bits (r/m byte) left imm8| | | | | | | | | |times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D1 /0 |ROL r/m16,1 |X|X|X|X|X|X|Rotate 16 bits (r/m word) left | | | | | | | | | |once | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D3 /0 |ROL r/m16,CL |X|X|X|X|X|X|Rotate 16 bits (r/m word) left CL | | | | | | | | | |times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C1 /0 ib |ROL r/m16,imm8 | |X|X|X|X|X|Rotate 16 bits (r/m word) left | | | | | | | | | |imm8 times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D1 /0 |ROL r/m32,1 | | | |X|X|X|Rotate 32 bits (r/m dword) left | | | | | | | | | |once | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D3 /0 |ROL r/m32,CL | | | |X|X|X|Rotate 32 bits (r/m dword) left CL| | | | | | | | | |times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C1 /0 ib |ROL r/m32,imm8 | | | |X|X|X|Rotate 32 bits (r/m dword) left | | | | | | | | | |imm8 times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D0 /1 |ROR r/m8,1 |X|X|X|X|X|X|Rotate 8 bits (r/m byte) right | | | | | | | | | |once | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D2 /1 |ROR r/m8,CL |X|X|X|X|X|X|Rotate 8 bits (r/m byte) right CL | | | | | | | | | |times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C0 /1 ib |ROR r/m8,imm8 | |X|X|X|X|X|Rotate 8 bits (r/m byte) right | | | | | | | | | |imm8 times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D1 /1 |ROR r/m16,1 |X|X|X|X|X|X|Rotate 16 bits (r/m word) right | | | | | | | | | |once | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D3 /1 |ROR r/m16,CL |X|X|X|X|X|X|Rotate 16 bits (r/m word) right CL| | | | | | | | | |times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C1 /1 ib |ROR r/m16,imm8 | |X|X|X|X|X|Rotate 16 bits (r/m word) right | | | | | | | | | |imm8 times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D1 /1 |ROR r/m32,1 | | | |X|X|X|Rotate 32 bits (r/m dword) right | | | | | | | | | |once | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D3 /1 |ROR r/m32,CL | | | |X|X|X|Rotate 32 bits (r/m dword) right | | | | | | | | | |CL times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C1 /1 ib |ROR r/m32,imm8 | | | |X|X|X|Rotate 32 bits (r/m dword) right | | | | | | | | | |imm8 times | \------------------------------------------------------------------------------/ Description Each rotate instruction shifts the bits of the register or memory operand given. The left rotate instructions shift all the bits upward, except for the top bit, which is returned to the bottom. The right rotate instructions do the reverse: the bits shift downward until the bottom bit arrives at the top. For the RCL and RCR instructions, the CF flag is part of the rotated quantity. The RCL instruction shifts the CF flag into the bottom bit and shifts the top bit into the CF flag; the RCR instruction shifts the CF flag into the top bit and shifts the bottom bit into the CF flag. For the ROL and ROR instructions, the original value of the CF flag is not a part of the result, but the CF flag receives a copy of the bit that was shifted from one end to the other. The rotate is repeated the number of times indicated by the second operand, which is either an immediate number or the contents of the CL register. To reduce the maximum instruction processing time, the Pentium processor does not allow rotation counts greater than 31. If a rotation count greater than 31 is attempted, only the bottom five bits of the rotation are used. The 8086 does not mask rotation counts. The Pentium processor in Virtual 8086 Mode does mask rotation counts. The OF flags is defined only for the single-rotate forms of the instructions (second operand is a 1). It is undefined in all other cases. For left shifts/rotates, the CF bit after the shift is XORed with the high- order result bit. For right shifts/rotates, the high-order two bits of the result are XORed to get the OF flag. Operation (* ROL - Rotate Left *) temp � COUNT; WHILE (temp <> 0) DO tmpcf � high-order bit of (r/m); r/m � r/m * 2 + (tmpcf); temp � temp - 1; OD; IF COUNT = 1 THEN IF high-order bit of r/m <> CF THEN OF � 1; ELSE OF � 0; FI; ELSE OF � undefined; FI; (* ROR - Rotate Right *) temp � COUNT; WHILE (temp <> 0) DO tmpcf � low-order bit of (r/m); r/m � r/m / 2 + (tmpcf * 2widty(r/m)); temp � temp - 1; DO; IF COUNT = 1 THEN IF (high-order bit of r/m) <> (bit next to high-order bit of r/m) THEN OF � 1; ELSE OF � 0; FI; ELSE OF � undefined; FI; Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| |* | | | | | | |* | \-----------------------/ The OF flag is affected only for single-bit rotates; the OF flag is undefined for multi-bit rotates; the CF flag contains the value of the bit shifted into it; the SF, ZF, AF, and PF flags are not affected. Protected Mode Exceptions #GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS (0) for an illegal address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions RDMSR-Read from Model Specific Register
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 32 |RDMSR | | | | | |X|Read Model Specific Register | | | | | | | | | |indicated by ECX into EDX:EAX | \------------------------------------------------------------------------------/
The value in ECX specifies one of the 64-bit Model Specific Registers of the Pentium processor. The content of that Model-Specific Register is copied into EDX:EAX. EDX is loaded with the high-order 32 bits, and EAX is loaded with the low-order 32 bits. The following values are used to select model specific registers on the Pentium processor. /---------------------------------------------------------------------------\ |VALUE|REGISTER NAME |DESCRIPTION | |-----+----------------------+----------------------------------------------| | 00H |Machine Check Address |Stores address of cycle causing the exception | |-----+----------------------+----------------------------------------------| | 01H |Machine Check Type |Stores type of cycle causing the exception | \---------------------------------------------------------------------------/ For other values used to perform cache, TLB, and BTB testing and performance monitoring, see the Intel documentation.
Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 32 |RDMSR | | | | | |X|Read Model Specific Register | | | | | | | | | |indicated by ECX into EDX:EAX | \------------------------------------------------------------------------------/ Description The value in ECX specifies one of the 64-bit Model Specific Registers of the Pentium processor. The content of that Model-Specific Register is copied into EDX:EAX. EDX is loaded with the high-order 32 bits, and EAX is loaded with the low-order 32 bits. The following values are used to select model specific registers on the Pentium processor. /---------------------------------------------------------------------------\ |VALUE|REGISTER NAME |DESCRIPTION | |-----+----------------------+----------------------------------------------| | 00H |Machine Check Address |Stores address of cycle causing the exception | |-----+----------------------+----------------------------------------------| | 01H |Machine Check Type |Stores type of cycle causing the exception | \---------------------------------------------------------------------------/ For other values used to perform cache, TLB, and BTB testing and performance monitoring, see the Intel documentation. Operation EDX:EAX � MSR[ECX]; Protected Mode Exceptions #GP(0) if either the current privilege level is not 0 or the value in ECX does not specify a Model-Specific Register that is implemented in the Pentium processor. Real Address Mode Exceptions #GP if the value in ECX does not specify a Model-Specific Register that is implemented in the Pentium processor. Virtual 8086 Mode Exceptions #GP(0) if instruction processing is attempted. Notes This instruction must be run at privilege level 0 or in real-address mode; otherwise, a protection exception will be generated. If less than 64 bits are implemented in a model specific register, the value returned to EDX:EAX, in the locations corresponding to the unimplemented bits, is unpredictable. RDMSR is used to read the content of Model-Specific Registers that control functions for testability, execution tracing, performance monitoring and machine check errors. Refer to the Pentium(TM) Processor Data Book for more information. The values 3H, 0FH, and values above 13H are reserved. Do not run RDMSR with reserved values in ECX. Related Information Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions RDTSC-Read Time Stamp Counter
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 31 |RDTSC | | | | | |X|Read Time Stamp Counter into | | | | | | | | | |EDX:EAX | \------------------------------------------------------------------------------/
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 31 |RDTSC | | | | | |X|Read Time Stamp Counter into | | | | | | | | | |EDX:EAX | \------------------------------------------------------------------------------/ Description Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions REP/REPE/REPZ/REPNE/REPNZ-Repeat Following String Operation
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F3 6C |REP INS r/m8,DX | |X|X|X|X|X|Input (E)CX bytes from port DX | | | | | | | | | |into ES:[(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F3 6D |REP INS r/m16,DX | |X|X|X|X|X|Input (E)CX words from port DX | | | | | | | | | |into ES:[(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F3 6D |REP INS r/m32,DX | | | |X|X|X|Input (E)CX dwords from port DX | | | | | | | | | |into ES:[(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F3 AC |REP LODS AL |X|X|X|X|X|X|Load (E)CX bytes from [(E)SI] to | | | | | | | | | |EDX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F3 AD |REP LODS AX |X|X|X|X|X|X|Load (E)CX words from [(E)SI] to | | | | | | | | | |EDX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F3 AD |REP LODS EAX | | | |X|X|X|Load (E)CX dwords from [(E)SI] to | | | | | | | | | |EDX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F3 A4 |REP MOVS m8,m8 |X|X|X|X|X|X|Move (E)CX bytes from [(E)SI] to | | | | | | | | | |ES:[(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F3 A5 |REP MOVS m16,m16 |X|X|X|X|X|X|Move (E)CX words from [(E)SI] to | | | | | | | | | |ES:[(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F3 A5 |REP MOVS m32,m32 | | | |X|X|X|Move (E)CX dwords from [(E)SI] to | | | | | | | | | |ES:[(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F3 6E |REP OUTS DX,r/m8 | |X|X|X|X|X|Output (E)CX bytes from [(E)SI] to| | | | | | | | | |port DX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F3 6F |REP OUTS DX,r/m16 | |X|X|X|X|X|Output (E)CX words from [(E)SI] to| | | | | | | | | |port DX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F3 6F |REP OUTS DX,r/m32 | | | |X|X|X|Output (E)CX dwords from [(E)SI] | | | | | | | | | |to port DX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F3 AA |REP STOS m8 |X|X|X|X|X|X|Store (E)CX bytes at ES:[(E)DI] | | | | | | | | | |from AL | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F3 AB |REP STOS m16 |X|X|X|X|X|X|Store (E)CX words at ES:[(E)DI] | | | | | | | | | |from AX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F3 AB |REP STOS m32 | | | |X|X|X|Store (E)CX dwords at ES:[(E)DI] | | | | | | | | | |from EAX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F3 A6 |REPE CMPS m8,m8 |X|X|X|X|X|X|Find nonmatching bytes in | | | | | | | | | |ES:[(E)DI] and [(E)SI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F3 A7 |REPE CMPS m16,m16 |X|X|X|X|X|X|Find nonmatching words in | | | | | | | | | |ES:[(E)DI] and [(E)SI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F3 A7 |REPE CMPS m32,m32 | | | |X|X|X|Find nonmatching dwords in | | | | | | | | | |ES:[(E)DI] and [(E)SI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F3 AE |REPE SCAS m8,m8 |X|X|X|X|X|X|Find non-AL byte starting at | | | | | | | | | |ES:[(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F3 AF |REPE SCAS m16,m16 |X|X|X|X|X|X|Find non-AX word starting at | | | | | | | | | |ES:[(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F3 AF |REPE SCAS m32,m32 | | | |X|X|X|Find non-EAX dword starting at | | | | | | | | | |ES:[(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F2 A6 |REPNE CMPS m8,m8 |X|X|X|X|X|X|Find matching bytes in ES:[(E)DI] | | | | | | | | | |and [(E)SI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F2 A7 |REPNE CMPS m16,m16 |X|X|X|X|X|X|Find matching words in ES:[(E)DI] | | | | | | | | | |and [(E)SI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F2 A7 |REPNE CMPS m32,m32 | | | |X|X|X|Find matching dwords in ES:[(E)DI]| | | | | | | | | |and [(E)SI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F2 AE |REPNE SCAS m8,m8 |X|X|X|X|X|X|Find AL, starting at ES:[(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F2 AF |REPNE SCAS m16,m16 |X|X|X|X|X|X|Find AX, starting at ES:[(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F2 AF |REPNE SCAS m32,m32 | | | |X|X|X|Find EAX, starting at ES:[(E)DI] | \------------------------------------------------------------------------------/
The REP, REPE (repeat while equal), and REPNE (repeat while not equal) prefixes are applied to string operation. Each prefix causes the string instruction that follows to be repeated the number of times indicated in the count register or (for the REPE and REPNE prefixes) until the indicated condition in the ZF flag is no longer met. Synonymous forms of the REPE and REPNE prefixes are the REPZ and REPNZ prefixes, respectively. The REP prefixes apply only to one string instruction at a time. To repeat a block of instructions, use the LOOP instruction or another looping construct. The precise action for each iteration is as follows: 1.If the address-size attribute is 16 bits, use the CX register for the count register; if the address-size attribute is 32 bits, use the ECX register for the count register. 2.Check the count register. If it is zero, exit the iteration, and move to the next instruction. 3.Acknowledge any pending interrupts. 4.Perform the string operation once. 5.Decrement the CX or count register by one; no flags are modified. 6.Check the ZF flag is the string operation is a SCAS or CMPS instruction. If the repeat condition does not hold, exit the iteration and move to the next instruction. Exit the iteration if the prefix if REPE and the ZF flag is 0 (the last comparison was not equal), or if the prefix is REPNE and the ZF flag is one (the last comparison was equal). 7.Return to step 2 for the next iteration. Repeated CMPS and SCAS instructions can be exited if the count is exhausted or if the ZF flag fails the repeat condition. These two cases can be distinguished by using either the JCXZ instruction, or by using the conditional jumps that test the ZF flag (the JZ, JNZ, and JNE instructions) .
Description Flags Affected Notes Operation Protected Mode Exceptions Protected Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F3 6C |REP INS r/m8,DX | |X|X|X|X|X|Input (E)CX bytes from port DX | | | | | | | | | |into ES:[(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F3 6D |REP INS r/m16,DX | |X|X|X|X|X|Input (E)CX words from port DX | | | | | | | | | |into ES:[(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F3 6D |REP INS r/m32,DX | | | |X|X|X|Input (E)CX dwords from port DX | | | | | | | | | |into ES:[(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F3 AC |REP LODS AL |X|X|X|X|X|X|Load (E)CX bytes from [(E)SI] to | | | | | | | | | |EDX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F3 AD |REP LODS AX |X|X|X|X|X|X|Load (E)CX words from [(E)SI] to | | | | | | | | | |EDX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F3 AD |REP LODS EAX | | | |X|X|X|Load (E)CX dwords from [(E)SI] to | | | | | | | | | |EDX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F3 A4 |REP MOVS m8,m8 |X|X|X|X|X|X|Move (E)CX bytes from [(E)SI] to | | | | | | | | | |ES:[(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F3 A5 |REP MOVS m16,m16 |X|X|X|X|X|X|Move (E)CX words from [(E)SI] to | | | | | | | | | |ES:[(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F3 A5 |REP MOVS m32,m32 | | | |X|X|X|Move (E)CX dwords from [(E)SI] to | | | | | | | | | |ES:[(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F3 6E |REP OUTS DX,r/m8 | |X|X|X|X|X|Output (E)CX bytes from [(E)SI] to| | | | | | | | | |port DX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F3 6F |REP OUTS DX,r/m16 | |X|X|X|X|X|Output (E)CX words from [(E)SI] to| | | | | | | | | |port DX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F3 6F |REP OUTS DX,r/m32 | | | |X|X|X|Output (E)CX dwords from [(E)SI] | | | | | | | | | |to port DX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F3 AA |REP STOS m8 |X|X|X|X|X|X|Store (E)CX bytes at ES:[(E)DI] | | | | | | | | | |from AL | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F3 AB |REP STOS m16 |X|X|X|X|X|X|Store (E)CX words at ES:[(E)DI] | | | | | | | | | |from AX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F3 AB |REP STOS m32 | | | |X|X|X|Store (E)CX dwords at ES:[(E)DI] | | | | | | | | | |from EAX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F3 A6 |REPE CMPS m8,m8 |X|X|X|X|X|X|Find nonmatching bytes in | | | | | | | | | |ES:[(E)DI] and [(E)SI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F3 A7 |REPE CMPS m16,m16 |X|X|X|X|X|X|Find nonmatching words in | | | | | | | | | |ES:[(E)DI] and [(E)SI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F3 A7 |REPE CMPS m32,m32 | | | |X|X|X|Find nonmatching dwords in | | | | | | | | | |ES:[(E)DI] and [(E)SI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F3 AE |REPE SCAS m8,m8 |X|X|X|X|X|X|Find non-AL byte starting at | | | | | | | | | |ES:[(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F3 AF |REPE SCAS m16,m16 |X|X|X|X|X|X|Find non-AX word starting at | | | | | | | | | |ES:[(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F3 AF |REPE SCAS m32,m32 | | | |X|X|X|Find non-EAX dword starting at | | | | | | | | | |ES:[(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F2 A6 |REPNE CMPS m8,m8 |X|X|X|X|X|X|Find matching bytes in ES:[(E)DI] | | | | | | | | | |and [(E)SI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F2 A7 |REPNE CMPS m16,m16 |X|X|X|X|X|X|Find matching words in ES:[(E)DI] | | | | | | | | | |and [(E)SI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F2 A7 |REPNE CMPS m32,m32 | | | |X|X|X|Find matching dwords in ES:[(E)DI]| | | | | | | | | |and [(E)SI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F2 AE |REPNE SCAS m8,m8 |X|X|X|X|X|X|Find AL, starting at ES:[(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F2 AF |REPNE SCAS m16,m16 |X|X|X|X|X|X|Find AX, starting at ES:[(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F2 AF |REPNE SCAS m32,m32 | | | |X|X|X|Find EAX, starting at ES:[(E)DI] | \------------------------------------------------------------------------------/ Description The REP, REPE (repeat while equal), and REPNE (repeat while not equal) prefixes are applied to string operation. Each prefix causes the string instruction that follows to be repeated the number of times indicated in the count register or (for the REPE and REPNE prefixes) until the indicated condition in the ZF flag is no longer met. Synonymous forms of the REPE and REPNE prefixes are the REPZ and REPNZ prefixes, respectively. The REP prefixes apply only to one string instruction at a time. To repeat a block of instructions, use the LOOP instruction or another looping construct. The precise action for each iteration is as follows: 1.If the address-size attribute is 16 bits, use the CX register for the count register; if the address-size attribute is 32 bits, use the ECX register for the count register. 2.Check the count register. If it is zero, exit the iteration, and move to the next instruction. 3.Acknowledge any pending interrupts. 4.Perform the string operation once. 5.Decrement the CX or count register by one; no flags are modified. 6.Check the ZF flag is the string operation is a SCAS or CMPS instruction. If the repeat condition does not hold, exit the iteration and move to the next instruction. Exit the iteration if the prefix if REPE and the ZF flag is 0 (the last comparison was not equal), or if the prefix is REPNE and the ZF flag is one (the last comparison was equal). 7.Return to step 2 for the next iteration. Repeated CMPS and SCAS instructions can be exited if the count is exhausted or if the ZF flag fails the repeat condition. These two cases can be distinguished by using either the JCXZ instruction, or by using the conditional jumps that test the ZF flag (the JZ, JNZ, and JNE instructions) . Operation IF AddressSize = 16 THEN use CX for CountReg; ELSE (* AddressSize = 32 *) use ECX for CountReg; FI; WHILE CountReg <> 0 DO service pending interrupts (if any); perform primitive string instruction; CountReg � CountReg -1; IF primitive operation is CMPSB, CMPSW, CMPSD, SCASB, SCASW, or SCASD THEN IF (instruction is REP/REPE/REPZ) AND (ZF=0) THEN exit WHILE loop ELSE IF (instruction if REPNZ or REPNE) AND (ZF=1) THEN exit WHILE loop; FI; FI; FO; OD; Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| | | | | |* | | | | \-----------------------/ The ZF flag is affected by the REP CMPS and REP SCAS as described above. Notes Not all I/O ports can handle the rate at which the REP INS and REP OUTS instructions run. Do not use the REP prefix with the LOOP instruction. Proper LOOP operation is not guaranteed when used with the REP prefix and the effect of this combination is unpredictable. The behavior of the REP prefix is undefined when used with non-string instructions. When a page fault occurs during CMPS or SCAS instructions that are prefixed with REPNE, the EFLAGS value is restored to the state prior to the processing of the instruction. Because SCAS and CMPS do not use EFLAGS as an input, the processor can resume the instruction after the page fault handler. Related Information Description Flags Affected Notes Operation Protected Mode Exceptions Protected Mode Exceptions Virtual 8086 Mode Exceptions RET-Return from Procedure
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C3 |RET/RETN |X|X|X|X|X|X|Return (near) to caller | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CB |RET/RETF |X|X|X|X|X|X|Return (far) to caller, same | | | | | | | | | |privilege | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CB |RET/RETF | | |X|X|X|X|Return (far), lesser privilege, | | | | | | | | | |switch stacks | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C2 iw |RET/RETN imm16 |X|X|X|X|X|X|Return (near), pop imm16 bytes | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CA iw |RET/RETF imm16 |X|X|X|X|X|X|Return (far), same privilege, pop | | | | | | | | | |imm16 bytes | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CA iw |RET/RETF imm16 | | |X|X|X|X|Return (far), lesser privilege, | | | | | | | | | |pop imm16 bytes | \------------------------------------------------------------------------------/
The RET instruction transfers control to a return address located on the stack. The address is usually placed on the stack by a CALL instruction, and the return is made to the instruction that follows the CALL instruction . The optional numeric parameter to the RET instruction gives the number of stack bytes (OperandMode=16) or words (OperandMode=32) to be released after the return address is popped. These items are typically used as input parameters to the procedure called. For the intrasegment (near) return, the address on the stack is a segment offset, which is popped into the instruction pointer. The CS register is unchanged. For the intersegment (far) return, the address on the stack is a long pointer. The offset is popped first, followed by the selector. In real mode, the CS and IP registers are loaded directly. In Protected Mode, an intersegment return causes the processor to check the descriptor addressed by the return selector. The AR byte of the descriptor must indicate a code segment of equal or lesser privilege (or greater or equal numeric value) than the current privilege level. Returns to a lesser privilege level cause the stack to be reloaded from the value saved beyond the parameter block. The DS, ES, FS, and GS segment registers can be cleared by the RET instruction during an interlevel transfer. If there registers refer to segments that cannot be used by the new privilege level, they are cleared to prevent unauthorized access from the new privilege level.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C3 |RET/RETN |X|X|X|X|X|X|Return (near) to caller | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CB |RET/RETF |X|X|X|X|X|X|Return (far) to caller, same | | | | | | | | | |privilege | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CB |RET/RETF | | |X|X|X|X|Return (far), lesser privilege, | | | | | | | | | |switch stacks | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C2 iw |RET/RETN imm16 |X|X|X|X|X|X|Return (near), pop imm16 bytes | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CA iw |RET/RETF imm16 |X|X|X|X|X|X|Return (far), same privilege, pop | | | | | | | | | |imm16 bytes | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |CA iw |RET/RETF imm16 | | |X|X|X|X|Return (far), lesser privilege, | | | | | | | | | |pop imm16 bytes | \------------------------------------------------------------------------------/ Description The RET instruction transfers control to a return address located on the stack. The address is usually placed on the stack by a CALL instruction, and the return is made to the instruction that follows the CALL instruction . The optional numeric parameter to the RET instruction gives the number of stack bytes (OperandMode=16) or words (OperandMode=32) to be released after the return address is popped. These items are typically used as input parameters to the procedure called. For the intrasegment (near) return, the address on the stack is a segment offset, which is popped into the instruction pointer. The CS register is unchanged. For the intersegment (far) return, the address on the stack is a long pointer. The offset is popped first, followed by the selector. In real mode, the CS and IP registers are loaded directly. In Protected Mode, an intersegment return causes the processor to check the descriptor addressed by the return selector. The AR byte of the descriptor must indicate a code segment of equal or lesser privilege (or greater or equal numeric value) than the current privilege level. Returns to a lesser privilege level cause the stack to be reloaded from the value saved beyond the parameter block. The DS, ES, FS, and GS segment registers can be cleared by the RET instruction during an interlevel transfer. If there registers refer to segments that cannot be used by the new privilege level, they are cleared to prevent unauthorized access from the new privilege level. Operation IF instruction = near RET THEN; IF OperandSize = 16 THEN IP � Pop(); EIP � EIP AND 0000FFFFH; ELSE (* OperandSize = 32 *) EIP � Pop(); FI; IF instruction has immediate operand THEN eSP � eSP + imm16; FI; FI; IF (PE = 0 OR (PE = 1 AND VM = 1)) (* real mode or virtual 8086 mode *) AND instruction = far RET THEN; IF OperandSize = 16 THEN IP � Pop(); EIP � EIP AND 0000FFFFH; CS � Pop(); (* 16-bit pop *) ELSE (* OperandSize = 32 *) EIP � Pop (); CS � Pop(); (* 32-bit pop, high-order 16-bits discarded *) FI; IF instruction has immediate operand THEN eSP � eSP + imm16; FI; FI; IF (PE = 1 AND VM = 0) (* Protected mode, not V86 mode *) AND instruction = far RET THEN IF OperandSize=32 THEN Third word on stack must be within stack limits else #SS(0); ELSE Second word on stack must be within stack limits else #SS(0); FI; Return selector RPL must be ó CPL ELSE #GP(return selector) IF return selector RPL = CPL THEN GOTO SAME-LEVEL; ELSE GOTO OUTER-PRIVILEGE-LEVEL; FI; FI; SAME-LEVEL: Return selector must be non-null ELSE #GP(0) Selector index must be within its descriptor table limits ELSE #GP(selector) Descriptor AR byte must indicate code segment ELSE #GP(selector) IF non-conforming THEN code segment DPL must equal CPL; ELSE #GP(selector); FI; IF conforming THEN code segment DPL must be ó CPL; ELSE #GP(selector); FI; Code segment must be present ELSE #NP(selector); Top word on stack must be within stack limits ELSE #SS(0); IP must be in code segment limit ELSE #GP(0); IF OperandSize=32 THEN Load CS:EIP from stack Load CS register with descriptor Increment eSP by 8 plus the immediate offset if it exists ELSE (* OperandSize=16 *) Load CS:IP from stack Load CS register with descriptor Increment eSP by 4 plus the immediate offset if it exists FI; OUTER-PRIVILEGE-LEVEL: IF OperandSize=32 THEN Top (16+immediate) bytes on stack must be within stack limits ELSE #SS(0); ELSE Top (8+immmediate) bytes on stack must be within stack limits ELSE #SS(0); FI; Examine return CS selector and associated descriptor: Selector must be non-null ELSE #GP(0); Selector index must be within its descriptor table limits ELSE #GP(selector) Descriptor AR byte must indicate code segment ELSE #GP(selector); IF non-conforming THEN code segment DPL must equal return selector RPL ELSE #GP(selector); FI; IF conforming THEN code segment DPL must be ó return selector RPL; ELSE #GP(selector); FI; Segment must be present ELSE #NP(selector) Examine return SS selector and associated descriptor: Selector must be non-null ELSE #GP(0); Selector index must be within its descriptor table limits ELSE #GP(selector); Selector RPL must equal the RPL of the return CS selector ELSE #GP(selector); Descriptor AR byte must indicate a writable data segment ELSE #GP(selector); Descriptor DPL must equal the RPL of the return CS selector ELSE #GP(selector); Segment must be present ELSE #NP(selector); IP must be in code segment limit ELSE #GP(0); Set CPL to the RPL of the return CS selector; IF OperandSize=32 THEN Load CS:EIP from stack; Set CS RPL to CPL; Increment eSP by 8 plus the immediate offset if it exists; Load SS:eSP from stack; ELSE (* OperandSize=16 *) Load CS:IP from stack; Set CS RPL to CPL; Increment eSP by 4 plus the immediate offset if it exists; Load SS:eSP from stack; FI; Load the CS register with the return CS descriptor; Load the SS register with the return SS descriptor; For each of ES, FS, GS, and DS DO IF the current register setting is not valid for the outer level, set the register to null (selector � AR � 0); To be valid, the register setting must satisfy the following properties: Selector index must be within descriptor table limits; Descriptor AR byte must indicate data or readable code segment; IF segment is data or non-conforming code, THEN DPL must be ò CPL, or DPL must be ò RPL; FI; OD; Protected Mode Exceptions #GP, #NP, or #SS, as described under "Operation" above; #PF(fault-code) for a page fault. Real Address Mode Exceptions Interrupt 13 if any part of the operand would be outside the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions ROL/ROR-Rotate See entry for RCL/RCR/ROL/ROR. RSM-Resume from System Management Mode
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F AA |RSM | | | | | |X|Resume operation of interrupted | | | | | | | | | |program | \------------------------------------------------------------------------------/
The processor state is restored from the dump created upon entrance to SMM. Note, however, that the contents of the model-specific registers are not affected. The processor leaves SMM and returns control to the interrupted application or operating system. If the processor detects any invalid state information, it enters the shutdown state. This happens in any of the following situations: �The value stored in the State Dump Base field is not a 32Kbyte aligned address. �Any reserved bit of CR4 is set to 1. �Any combination of bits in CR0 is illegal; namely, (PG=1 and PE=0) or (NW= 1 and CD=0).
Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F AA |RSM | | | | | |X|Resume operation of interrupted | | | | | | | | | |program | \------------------------------------------------------------------------------/ Description The processor state is restored from the dump created upon entrance to SMM. Note, however, that the contents of the model-specific registers are not affected. The processor leaves SMM and returns control to the interrupted application or operating system. If the processor detects any invalid state information, it enters the shutdown state. This happens in any of the following situations: �The value stored in the State Dump Base field is not a 32Kbyte aligned address. �Any reserved bit of CR4 is set to 1. �Any combination of bits in CR0 is illegal; namely, (PG=1 and PE=0) or (NW= 1 and CD=0). Operation Resume operation of a program interrupted by a System Management Mode interrupt. Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| |* |* |* |* |* |* |* |* | \-----------------------/ All Protected Mode Exceptions #UD if an attempt is made to run this instruction when the processor is not in System Management Mode. Real Address Mode Exceptions #UD if an attempt is made to run this instruction when the processor is not in System Management Mode. Virtual 8086 Mode Exceptions #UD if an attempt is made to run this instruction when the processor is not in System Management Mode. Notes Refer to the Intel documentation for more information about System Management Mode and the behavior of the RSM instruction. Related Information Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions SAHF-Store AH into Flags
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9E |SAHF |X|X|X|X|X|X|Store AH into flags (SF, ZF, xx, | | | | | | | | | |AF, xx, PF, xx, CF) | \------------------------------------------------------------------------------/
The SAHF instruction loads the SF, ZF, AF, PF,A and CF flags with values from the AH register, from bits 7, 6, 4, 2, and 0, respectively.
Description Flags Affected Operation Protected Mode Exceptions Protected Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9E |SAHF |X|X|X|X|X|X|Store AH into flags (SF, ZF, xx, | | | | | | | | | |AF, xx, PF, xx, CF) | \------------------------------------------------------------------------------/ Description The SAHF instruction loads the SF, ZF, AF, PF,A and CF flags with values from the AH register, from bits 7, 6, 4, 2, and 0, respectively. Operation SF:ZF:xx:AF:xx:PF:xx:CF� AH; Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| | | | |* |* |* |* |* | \-----------------------/ The SF, ZF, AF, PF, and CF flags are loaded with values from the AH register. Related Information Description Flags Affected Operation Protected Mode Exceptions Protected Mode Exceptions Virtual 8086 Mode Exceptions SAL/SAR/SHL/SHR-Shift Instructions
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D0 /4 |SAL r/m8,1 |X|X|X|X|X|X|Multiply r/m byte by 2, once | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D2 /4 |SAL r/m8,CL |X|X|X|X|X|X|Multiply r/m byte by 2, CL times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C0 /5 ib |SAL r/m8,imm8 | |X|X|X|X|X|Multiply r/m byte by 2, imm8 times| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D1 /4 |SAL r/m16,1 |X|X|X|X|X|X|Multiply r/m word by 2, once | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D1 /4 |SAL r/m32,1 | | | |X|X|X|Multiply r/m dword by 2, once | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D3 /4 |SAL r/m16,CL |X|X|X|X|X|X|Multiply r/m word by 2, CL times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D3 /4 |SAL r/m32,CL | | | |X|X|X|Multiply r/m dword by 2, CL times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C1 /4 ib |SAL r/m16,imm8 | |X|X|X|X|X|Multiply r/m word by 2, imm8 times| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C1 /4 ib |SAL r/m32,imm8 | | | |X|X|X|Multiply r/m dword by 2, imm8 | | | | | | | | | |times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D0 /7 |SAR r/m8,1 |X|X|X|X|X|X|Signed divide r/m byte by 2, once | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D2 /7 |SAR r/m8,CL |X|X|X|X|X|X|Signed divide r/m byte by 2, CL | | | | | | | | | |times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C0 /7 ib |SAR r/m8,imm8 | |X|X|X|X|X|Signed divide r/m byte by 2, imm8 | | | | | | | | | |times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D1 /7 |SAR r/m16,1 |X|X|X|X|X|X|Signed divide r/m word by 2, once | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D1 /7 |SAR r/m32,1 | | | |X|X|X|Signed divide r/m dword by 2, once| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D3 /7 |SAR r/m16,CL |X|X|X|X|X|X|Signed divide r/m word by 2, CL | | | | | | | | | |times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D3 /7 |SAR r/m32,CL | | | |X|X|X|Signed divide r/m dword by 2, CL | | | | | | | | | |times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C1 /7 ib |SAR r/m16,imm8 | |X|X|X|X|X|Signed divide r/m word by 2, imm8 | | | | | | | | | |times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C1 /7 ib |SAR r/m32,imm8 | | | |X|X|X|Signed divide r/m dword by 2, imm8| | | | | | | | | |times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D0 /4 |SHL r/m8,1 |X|X|X|X|X|X|Multiply r/m byte by 2, once | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D0 /4 |SHL r/m8,CL |X|X|X|X|X|X|Multiply r/m byte by 2, CL times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C0 /4 ib |SHL r/m8,imm8 | |X|X|X|X|X|Multiply r/m byte by 2, imm8 times| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D1 /4 |SHL r/m16,1 |X|X|X|X|X|X|Multiply r/m word by 2, once | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D1 /4 |SHL r/m32,1 | | | |X|X|X|Multiply r/m dword by 2, once | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D3 /4 |SHL r/m16,CL |X|X|X|X|X|X|Multiply r/m word by 2, CL times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D3 /4 |SHL r/m32,CL | | | |X|X|X|Multiply r/m dword by 2, CL times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C1 /4 ib |SHL r/m16,imm8 | |X|X|X|X|X|Multiply r/m word by 2, imm8 times| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C1 /4 ib |SHL r/m32,imm8 | | | |X|X|X|Multiply r/m dword by 2, imm8 | | | | | | | | | |times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D0 /5 |SHR r/m8,1 |X|X|X|X|X|X|Signed divide r/m byte by 2, once | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D2 /5 |SHR r/m8,CL |X|X|X|X|X|X|Signed divide r/m byte by 2, CL | | | | | | | | | |times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C0 /5 ib |SHR r/m8,imm8 | |X|X|X|X|X|Signed divide r/m byte by 2, imm8 | | | | | | | | | |times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D1 /5 |SHR r/m16,1 |X|X|X|X|X|X|Signed divide r/m word by 2, once | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D1 /5 |SHR r/m32,1 | | | |X|X|X|Signed divide r/m dword by 2, once| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D3 /5 |SHR r/m16,CL |X|X|X|X|X|X|Signed divide r/m word by 2, CL | | | | | | | | | |times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D3 /5 |SHR r/m32,CL | | | |X|X|X|Signed divide r/m dword by 2, CL | | | | | | | | | |times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C1 /5 ib |SHR r/m16,imm8 | |X|X|X|X|X|Signed divide r/m word by 2, imm8 | | | | | | | | | |times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C1 /5 ib |SHR r/m32,imm8 | | | |X|X|X|Signed divide r/m dword by 2, imm8| | | | | | | | | |times | \------------------------------------------------------------------------------/
The SAL instruction (or its synonym, SHL) shifts the bits of the operand upward. The high-order bit is shifted into the CF flag, and the low-order bit is cleared. The SAR and SHR instructions shift the bits of the operand downward. The low-order bit is shifted into the CF flag. The effect is to divide the operand by two. The SAR instruction performs a signed divide with rounding toward negative infinity (not the same as the IDIV instruction); the high- order bit remains the same. The SHR instruction performs an unsigned divide ; the high-order bit is cleared. The shift is repeated the number of times indicated by the second operand, which is either an immediate number or the contents of the CL register. To reduce the maximum processing time, the Pentium processor does not allow shift counts greater than 31. If a shift count greater than 31 is attempted , only the bottom five bits of the shift count are used. (The 8086 uses all eight bits of the shift count.) The OF flag is affected only if the single-shift forms of the instructions are used. For left shifts, the OF flag is cleared if the high bit of the answer is the same as the result of the CF flag (i.e., the top two bits of the original operand were the same); the OF flag is set if they are different. For the SAR instruction, the OF flag is cleared for all single shifts. For the SHR instruction, the OF flag is set for the high-order bit of the original operand.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D0 /4 |SAL r/m8,1 |X|X|X|X|X|X|Multiply r/m byte by 2, once | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D2 /4 |SAL r/m8,CL |X|X|X|X|X|X|Multiply r/m byte by 2, CL times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C0 /5 ib |SAL r/m8,imm8 | |X|X|X|X|X|Multiply r/m byte by 2, imm8 times| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D1 /4 |SAL r/m16,1 |X|X|X|X|X|X|Multiply r/m word by 2, once | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D1 /4 |SAL r/m32,1 | | | |X|X|X|Multiply r/m dword by 2, once | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D3 /4 |SAL r/m16,CL |X|X|X|X|X|X|Multiply r/m word by 2, CL times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D3 /4 |SAL r/m32,CL | | | |X|X|X|Multiply r/m dword by 2, CL times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C1 /4 ib |SAL r/m16,imm8 | |X|X|X|X|X|Multiply r/m word by 2, imm8 times| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C1 /4 ib |SAL r/m32,imm8 | | | |X|X|X|Multiply r/m dword by 2, imm8 | | | | | | | | | |times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D0 /7 |SAR r/m8,1 |X|X|X|X|X|X|Signed divide r/m byte by 2, once | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D2 /7 |SAR r/m8,CL |X|X|X|X|X|X|Signed divide r/m byte by 2, CL | | | | | | | | | |times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C0 /7 ib |SAR r/m8,imm8 | |X|X|X|X|X|Signed divide r/m byte by 2, imm8 | | | | | | | | | |times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D1 /7 |SAR r/m16,1 |X|X|X|X|X|X|Signed divide r/m word by 2, once | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D1 /7 |SAR r/m32,1 | | | |X|X|X|Signed divide r/m dword by 2, once| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D3 /7 |SAR r/m16,CL |X|X|X|X|X|X|Signed divide r/m word by 2, CL | | | | | | | | | |times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D3 /7 |SAR r/m32,CL | | | |X|X|X|Signed divide r/m dword by 2, CL | | | | | | | | | |times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C1 /7 ib |SAR r/m16,imm8 | |X|X|X|X|X|Signed divide r/m word by 2, imm8 | | | | | | | | | |times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C1 /7 ib |SAR r/m32,imm8 | | | |X|X|X|Signed divide r/m dword by 2, imm8| | | | | | | | | |times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D0 /4 |SHL r/m8,1 |X|X|X|X|X|X|Multiply r/m byte by 2, once | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D0 /4 |SHL r/m8,CL |X|X|X|X|X|X|Multiply r/m byte by 2, CL times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C0 /4 ib |SHL r/m8,imm8 | |X|X|X|X|X|Multiply r/m byte by 2, imm8 times| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D1 /4 |SHL r/m16,1 |X|X|X|X|X|X|Multiply r/m word by 2, once | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D1 /4 |SHL r/m32,1 | | | |X|X|X|Multiply r/m dword by 2, once | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D3 /4 |SHL r/m16,CL |X|X|X|X|X|X|Multiply r/m word by 2, CL times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D3 /4 |SHL r/m32,CL | | | |X|X|X|Multiply r/m dword by 2, CL times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C1 /4 ib |SHL r/m16,imm8 | |X|X|X|X|X|Multiply r/m word by 2, imm8 times| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C1 /4 ib |SHL r/m32,imm8 | | | |X|X|X|Multiply r/m dword by 2, imm8 | | | | | | | | | |times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D0 /5 |SHR r/m8,1 |X|X|X|X|X|X|Signed divide r/m byte by 2, once | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D2 /5 |SHR r/m8,CL |X|X|X|X|X|X|Signed divide r/m byte by 2, CL | | | | | | | | | |times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C0 /5 ib |SHR r/m8,imm8 | |X|X|X|X|X|Signed divide r/m byte by 2, imm8 | | | | | | | | | |times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D1 /5 |SHR r/m16,1 |X|X|X|X|X|X|Signed divide r/m word by 2, once | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D1 /5 |SHR r/m32,1 | | | |X|X|X|Signed divide r/m dword by 2, once| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D3 /5 |SHR r/m16,CL |X|X|X|X|X|X|Signed divide r/m word by 2, CL | | | | | | | | | |times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D3 /5 |SHR r/m32,CL | | | |X|X|X|Signed divide r/m dword by 2, CL | | | | | | | | | |times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C1 /5 ib |SHR r/m16,imm8 | |X|X|X|X|X|Signed divide r/m word by 2, imm8 | | | | | | | | | |times | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |C1 /5 ib |SHR r/m32,imm8 | | | |X|X|X|Signed divide r/m dword by 2, imm8| | | | | | | | | |times | \------------------------------------------------------------------------------/ Description The SAL instruction (or its synonym, SHL) shifts the bits of the operand upward. The high-order bit is shifted into the CF flag, and the low-order bit is cleared. The SAR and SHR instructions shift the bits of the operand downward. The low-order bit is shifted into the CF flag. The effect is to divide the operand by two. The SAR instruction performs a signed divide with rounding toward negative infinity (not the same as the IDIV instruction); the high- order bit remains the same. The SHR instruction performs an unsigned divide ; the high-order bit is cleared. The shift is repeated the number of times indicated by the second operand, which is either an immediate number or the contents of the CL register. To reduce the maximum processing time, the Pentium processor does not allow shift counts greater than 31. If a shift count greater than 31 is attempted , only the bottom five bits of the shift count are used. (The 8086 uses all eight bits of the shift count.) The OF flag is affected only if the single-shift forms of the instructions are used. For left shifts, the OF flag is cleared if the high bit of the answer is the same as the result of the CF flag (i.e., the top two bits of the original operand were the same); the OF flag is set if they are different. For the SAR instruction, the OF flag is cleared for all single shifts. For the SHR instruction, the OF flag is set for the high-order bit of the original operand. Operation (* COUNT is the second parameter *) (temp) � COUNT; WHILE (temp<> 0) DO IF instruction is SAL or SHL THEN CF � high-order bit of r/m; FI; IF instruction is SAR or SHR THEN CF � low-order bit of r/m; FI; IF instruction = SAL or SHL THEN r/m � r/m * 2; FI; IF instruction = SAR THEN r/m � r/m ;2 (*Signed divide, rounding toward negative infinity*); FI; IF instruction = SHR THEN r/m � r/m / 2; (* Unsigned divide *); FI; temp � temp - 1; OD; * Determine overflow for the various instructions *) IF COUNT = 1 THEN IF instruction is SAL or SHL THEN OF � high-order bit of r/m <> (CF); FI; IF instruction is SAR THEN OF � 0; FI; IF instruction is SHR THEN OF � high-order bit of operand; FI; ELSE OF � undefined; FI; Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| |* | | |* |* |? |* |* | \-----------------------/ If count = 0, the flags are not affected. The CF flag contains the value of the last bit shifted out. The CF flag is undefined for SHL and SHR instructions in which the shift lengths are greater than or equal to the size of the operand to be shifted. The OF flag is affected for single shifts; the OF flag is undefined for multiple shifts; the CF, ZF, PF, and SF flags are set according to the result. Protected Mode Exceptions #GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS (0) for an illegal address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions SBB-Integer Subtraction with Borrow
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |1C ib |SBB AL,imm8 |X|X|X|X|X|X|Subtract with borrow, immediate | | | | | | | | | |byte from AL | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |1D iw |SBB AX,imm16 |X|X|X|X|X|X|Subtract with borrow, immediate | | | | | | | | | |word AX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |1D id |SBB EAX,imm32 | | | |X|X|X|Subtract with borrow, immediate | | | | | | | | | |dword from EAX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |80 /3 ib |SBB r/m8,imm8 |X|X|X|X|X|X|Subtract with borrow, immediate | | | | | | | | | |byte from r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |81 /3 iw |SBB r/m16,imm16 |X|X|X|X|X|X|Subtract with borrow, immediate | | | | | | | | | |word from r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |81 /3 id |SBB r/m32,imm32 | | | |X|X|X|Subtract with borrow, immediate | | | | | | | | | |dword from r/m dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |83 /3 ib |SBB r/m16,imm8 |X|X|X|X|X|X|Subtract with borrow, | | | | | | | | | |sign-extended immediate byte from | | | | | | | | | |r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |83 /3 ib |SBB r/m32,imm8 | | | |X|X|X|Subtract with borrow, | | | | | | | | | |sign-extended immediate byte from | | | | | | | | | |r/m dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |18 /r |SBB r/m8,r8 |X|X|X|X|X|X|Subtract with borrow, byte | | | | | | | | | |register from r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |19 /r |SBB r/m16,r16 |X|X|X|X|X|X|Subtract with borrow, word | | | | | | | | | |register from r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |19 /r |SBB r/m32,r32 | | | |X|X|X|Subtract with borrow, dword | | | | | | | | | |register from r/m dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |1A /r |SBB r8,r/m8 |X|X|X|X|X|X|Subtract with borrow, r/m byte | | | | | | | | | |from byte register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |1B /r |SBB r16,r/m16 |X|X|X|X|X|X|Subtract with borrow, r/m word | | | | | | | | | |from word register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |1B /r |SBB r32,r/m32 | | | |X|X|X|Subtract with borrow, r/m dword | | | | | | | | | |from dword register | \------------------------------------------------------------------------------/
The SBB instruction adds the second operand (SRC) to the CF flag and subtracts the result from the first operand (DEST). The result of the subtraction is assigned to the first operand (DEST), and the flags are set accordingly. When an immediate byte value is subtracted from a word operand, the immediate value is first sign-extended.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |1C ib |SBB AL,imm8 |X|X|X|X|X|X|Subtract with borrow, immediate | | | | | | | | | |byte from AL | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |1D iw |SBB AX,imm16 |X|X|X|X|X|X|Subtract with borrow, immediate | | | | | | | | | |word AX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |1D id |SBB EAX,imm32 | | | |X|X|X|Subtract with borrow, immediate | | | | | | | | | |dword from EAX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |80 /3 ib |SBB r/m8,imm8 |X|X|X|X|X|X|Subtract with borrow, immediate | | | | | | | | | |byte from r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |81 /3 iw |SBB r/m16,imm16 |X|X|X|X|X|X|Subtract with borrow, immediate | | | | | | | | | |word from r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |81 /3 id |SBB r/m32,imm32 | | | |X|X|X|Subtract with borrow, immediate | | | | | | | | | |dword from r/m dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |83 /3 ib |SBB r/m16,imm8 |X|X|X|X|X|X|Subtract with borrow, | | | | | | | | | |sign-extended immediate byte from | | | | | | | | | |r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |83 /3 ib |SBB r/m32,imm8 | | | |X|X|X|Subtract with borrow, | | | | | | | | | |sign-extended immediate byte from | | | | | | | | | |r/m dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |18 /r |SBB r/m8,r8 |X|X|X|X|X|X|Subtract with borrow, byte | | | | | | | | | |register from r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |19 /r |SBB r/m16,r16 |X|X|X|X|X|X|Subtract with borrow, word | | | | | | | | | |register from r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |19 /r |SBB r/m32,r32 | | | |X|X|X|Subtract with borrow, dword | | | | | | | | | |register from r/m dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |1A /r |SBB r8,r/m8 |X|X|X|X|X|X|Subtract with borrow, r/m byte | | | | | | | | | |from byte register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |1B /r |SBB r16,r/m16 |X|X|X|X|X|X|Subtract with borrow, r/m word | | | | | | | | | |from word register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |1B /r |SBB r32,r/m32 | | | |X|X|X|Subtract with borrow, r/m dword | | | | | | | | | |from dword register | \------------------------------------------------------------------------------/ Description The SBB instruction adds the second operand (SRC) to the CF flag and subtracts the result from the first operand (DEST). The result of the subtraction is assigned to the first operand (DEST), and the flags are set accordingly. When an immediate byte value is subtracted from a word operand, the immediate value is first sign-extended. Operation F SRC is a byte and DEST is a word or dword THEN DEST = DEST - (SignExtend(SRC) + CF) ELSE DEST � DEST - (SRC + CF); Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| |* | | |* |* |* |* |* | \-----------------------/ The OF, SF, ZF, AF, PF, and CF flags are set according to the result. Protected Mode Exceptions #GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS (0) for an illegal address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions SCAS/SCASB/SCASW/SCASD-Compare String Data
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |AE |SCAS m8 |X|X|X|X|X|X|Compare AL with byte at | | | | | | | | | |ES:[(E)DI], update [(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |AF |SCAS m16 |X|X|X|X|X|X|Compare AX with word at | | | | | | | | | |ES:[(E)DI], update [(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |AF |SCAS m32 | | | |X|X|X|Compare EAX with dword at | | | | | | | | | |ES:[(E)DI], update [(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |AE |SCASB |X|X|X|X|X|X|Compare AL with byte at | | | | | | | | | |ES:[(E)DI], update [(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |AF |SCASW |X|X|X|X|X|X|Compare AX with word at | | | | | | | | | |ES:[(E)DI], update [(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |AF |SCASD | | | |X|X|X|Compare EAX with dword at | | | | | | | | | |ES:[(E)DI], update [(E)DI] | \------------------------------------------------------------------------------/
The SCAS instruction subtracts the memory byte or word at the destination register from the AL, AX or EAX register. The result is discarded; only the flags are set. The operand must be addressable from the ES segment; no segment override is possible. If the address-size attribute for this instruction is 16 bits, the DI register is used as the destination register, otherwise, the address-size attribute is 32 bits and the EDI register is used. The address of the memory data being compared is determined solely by the contents of the destination register, not by the operand to the SCAS instruction. The operand validates ES segment addressability and determines the data type. Load the correct index value into the DI or EDI register before running the SCAS instruction. After the comparison is made, the destination register is automatically updated. If the direction flag is 0 (the CLD instruction was run), the destination register is incremented; if the direction flag is 1 (the STD instruction was run), it is decremented. The increments or decrements are by 1 if bytes are compared, by 2 if words are compared, or by 4 if doublewords are compared. The SCASB, SCASW, and SCASD instructions are synonyms for the byre, word and doubleword SCAS instructions that don't require operands. They are simpler to code, but provide no type or segment checking. The SCAS instruction can be preceded by the REPE or REPNE prefix for a block search of CX or ECX bytes or words. Refer to the REP instruction for further details.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |AE |SCAS m8 |X|X|X|X|X|X|Compare AL with byte at | | | | | | | | | |ES:[(E)DI], update [(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |AF |SCAS m16 |X|X|X|X|X|X|Compare AX with word at | | | | | | | | | |ES:[(E)DI], update [(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |AF |SCAS m32 | | | |X|X|X|Compare EAX with dword at | | | | | | | | | |ES:[(E)DI], update [(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |AE |SCASB |X|X|X|X|X|X|Compare AL with byte at | | | | | | | | | |ES:[(E)DI], update [(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |AF |SCASW |X|X|X|X|X|X|Compare AX with word at | | | | | | | | | |ES:[(E)DI], update [(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |AF |SCASD | | | |X|X|X|Compare EAX with dword at | | | | | | | | | |ES:[(E)DI], update [(E)DI] | \------------------------------------------------------------------------------/ Description The SCAS instruction subtracts the memory byte or word at the destination register from the AL, AX or EAX register. The result is discarded; only the flags are set. The operand must be addressable from the ES segment; no segment override is possible. If the address-size attribute for this instruction is 16 bits, the DI register is used as the destination register, otherwise, the address-size attribute is 32 bits and the EDI register is used. The address of the memory data being compared is determined solely by the contents of the destination register, not by the operand to the SCAS instruction. The operand validates ES segment addressability and determines the data type. Load the correct index value into the DI or EDI register before running the SCAS instruction. After the comparison is made, the destination register is automatically updated. If the direction flag is 0 (the CLD instruction was run), the destination register is incremented; if the direction flag is 1 (the STD instruction was run), it is decremented. The increments or decrements are by 1 if bytes are compared, by 2 if words are compared, or by 4 if doublewords are compared. The SCASB, SCASW, and SCASD instructions are synonyms for the byre, word and doubleword SCAS instructions that don't require operands. They are simpler to code, but provide no type or segment checking. The SCAS instruction can be preceded by the REPE or REPNE prefix for a block search of CX or ECX bytes or words. Refer to the REP instruction for further details. Operation IF AddressSize = 16THEN use DI for dest-index;ELS E (* AddressSize = 32 *) use EDI for dest-index; FI; If byte type of instruction THEN AL - [dest-index]; (* Compare byte in AL and dest *) IF DF = 0 THEN IncDec � 1 ELSE IncDec � -1; FI; ELSE IF OperandSize = 16 THEN AX - [dest-index]; (* compare word in AL and dest *) IF DF = 0 THEN IncDec � 2 ELSE IncDec � -2; FI; ELSE (* OperandSize = 32 *) EAX - [dest-index];(* compare dword in EAX and dest *) IF DF = 0 THEN IncDec � 4 ELSE IncDec � -4; FI; FI; FI; dest-index = dest-index + IncDec Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| |* | | |* |* |* |* |* | \-----------------------/ The OF, SF, ZF, AF, PF, and CF flags are set according to the result. Protected Mode Exceptions #GP(0) for an illegal memory operand effective address in the ES segment; # PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions SETcc-Byte Set on Condition
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 97 |SETA r/m8 | | | |X|X|X|Set byte if above (CF=0 and ZF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 93 |SETAE r/m8 | | | |X|X|X|Set byte if above or equal (CF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 92 |SETB r/m8 | | | |X|X|X|Set byte if below (CF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 96 |SETBE r/m8 | | | |X|X|X|Set byte if below or equal (CF=1 | | | | | | | | | |or ZF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 92 |SETC r/m8 | | | |X|X|X|Set byte if carry (CF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 94 |SETE r/m8 | | | |X|X|X|Set byte if equal (ZF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 9F |SETG r/m8 | | | |X|X|X|Set byte if greater (ZF=0 or | | | | | | | | | |SF=OF) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 9D |SETGE r/m8 | | | |X|X|X|Set byte if greater or equal | | | | | | | | | |(SF=OF) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 9C |SETL r/m8 | | | |X|X|X|Set byte if less (SF<>OF) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 9E |SETLE r/m8 | | | |X|X|X|Set byte if less or equal (ZF=1 | | | | | | | | | |and SF<>OF) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 96 |SETNA r/m8 | | | |X|X|X|Set byte if not above (CF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 92 |SETNAE r/m8 | | | |X|X|X|Set byte if not above or equal | | | | | | | | | |(CF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 93 |SETNB r/m8 | | | |X|X|X|Set byte if not below (CF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 97 |SETNBE r/m8 | | | |X|X|X|Set byte if not below or equal | | | | | | | | | |(CF=0 and ZF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 93 |SETNC r/m8 | | | |X|X|X|Set byte if not carry (CF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 95 |SETNE r/m8 | | | |X|X|X|Set byte if not equal (ZF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 9E |SETNG r/m8 | | | |X|X|X|Set byte if not greater (ZF=1 or | | | | | | | | | |SF<>OF) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 9C |SETNGE r/m8 | | | |X|X|X|Set byte if not greater or equal | | | | | | | | | |(SF<>OF) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 9D |SETNL r/m8 | | | |X|X|X|Set byte if not less (SF=OF) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 9F |SETNLE r/m8 | | | |X|X|X|Set byte if not less or equal | | | | | | | | | |(ZF=1 and SF<>OF) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 91 |SETNO r/m8 | | | |X|X|X|Set byte if not overflow (OF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 9B |SETNP r/m8 | | | |X|X|X|Set byte if not parity (PF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 99 |SETNS r/m8 | | | |X|X|X|Set byte if not sign (SF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 95 |SETNZ r/m8 | | | |X|X|X|Set byte if not zero (ZF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 90 |SETO r/m8 | | | |X|X|X|Set byte if overflow (OF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 9A |SETP r/m8 | | | |X|X|X|Set byte if parity (PF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 9A |SETPE r/m8 | | | |X|X|X|Set byte if parity even (PF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 9B |SETPO r/m8 | | | |X|X|X|Set byte if parity odd (PF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 98 |SETS r/m8 | | | |X|X|X|Set byte if sign (SF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 94 |SETZ r/m8 | | | |X|X|X|Set byte if zero (ZF=1) | \------------------------------------------------------------------------------/
The SETcc instruction stores a 1 byte at the destination specified by the effective address or register if the condition is met, or a 0 byte if the condition is not met.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 97 |SETA r/m8 | | | |X|X|X|Set byte if above (CF=0 and ZF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 93 |SETAE r/m8 | | | |X|X|X|Set byte if above or equal (CF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 92 |SETB r/m8 | | | |X|X|X|Set byte if below (CF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 96 |SETBE r/m8 | | | |X|X|X|Set byte if below or equal (CF=1 | | | | | | | | | |or ZF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 92 |SETC r/m8 | | | |X|X|X|Set byte if carry (CF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 94 |SETE r/m8 | | | |X|X|X|Set byte if equal (ZF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 9F |SETG r/m8 | | | |X|X|X|Set byte if greater (ZF=0 or | | | | | | | | | |SF=OF) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 9D |SETGE r/m8 | | | |X|X|X|Set byte if greater or equal | | | | | | | | | |(SF=OF) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 9C |SETL r/m8 | | | |X|X|X|Set byte if less (SF<>OF) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 9E |SETLE r/m8 | | | |X|X|X|Set byte if less or equal (ZF=1 | | | | | | | | | |and SF<>OF) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 96 |SETNA r/m8 | | | |X|X|X|Set byte if not above (CF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 92 |SETNAE r/m8 | | | |X|X|X|Set byte if not above or equal | | | | | | | | | |(CF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 93 |SETNB r/m8 | | | |X|X|X|Set byte if not below (CF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 97 |SETNBE r/m8 | | | |X|X|X|Set byte if not below or equal | | | | | | | | | |(CF=0 and ZF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 93 |SETNC r/m8 | | | |X|X|X|Set byte if not carry (CF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 95 |SETNE r/m8 | | | |X|X|X|Set byte if not equal (ZF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 9E |SETNG r/m8 | | | |X|X|X|Set byte if not greater (ZF=1 or | | | | | | | | | |SF<>OF) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 9C |SETNGE r/m8 | | | |X|X|X|Set byte if not greater or equal | | | | | | | | | |(SF<>OF) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 9D |SETNL r/m8 | | | |X|X|X|Set byte if not less (SF=OF) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 9F |SETNLE r/m8 | | | |X|X|X|Set byte if not less or equal | | | | | | | | | |(ZF=1 and SF<>OF) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 91 |SETNO r/m8 | | | |X|X|X|Set byte if not overflow (OF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 9B |SETNP r/m8 | | | |X|X|X|Set byte if not parity (PF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 99 |SETNS r/m8 | | | |X|X|X|Set byte if not sign (SF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 95 |SETNZ r/m8 | | | |X|X|X|Set byte if not zero (ZF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 90 |SETO r/m8 | | | |X|X|X|Set byte if overflow (OF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 9A |SETP r/m8 | | | |X|X|X|Set byte if parity (PF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 9A |SETPE r/m8 | | | |X|X|X|Set byte if parity even (PF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 9B |SETPO r/m8 | | | |X|X|X|Set byte if parity odd (PF=0) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 98 |SETS r/m8 | | | |X|X|X|Set byte if sign (SF=1) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 94 |SETZ r/m8 | | | |X|X|X|Set byte if zero (ZF=1) | \------------------------------------------------------------------------------/ Description The SETcc instruction stores a 1 byte at the destination specified by the effective address or register if the condition is met, or a 0 byte if the condition is not met. Operation IF condition THEN r/m8 � 1 ELSE r/m8 � 0; FI; Protected Mode Exceptions #GP(0) if the result is in a non-writable segment; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS (0) for an illegal address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions SGDT/SIDT-Store Global/Interrupt Descriptor Table Register
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 01 /0 |SGDT m | | |X|X|X|X|Store GDTR to m (6 bytes) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 01 /1 |SIDT m | | |X|X|X|X|Store IDTR to m (6 bytes) | \------------------------------------------------------------------------------/
The SGDT and SIDT instructions copy the contents of the descriptor table register to the six bytes of memory indicated by the operand. The LIMIT field of the register is assigned to the first word at the effective address. If the operand-size attribute is 16 bits, the next three bytes are assigned the BASE field of the register, and the fourth byte is undefined. Otherwise, if the operand-size attribute is 32 bits, the next four bytes are assigned the 32-bit BASE field of the register. The SGDT and SIDT instructions are used only in operating system software; they are not used in application programs.
Compatibility Note Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 01 /0 |SGDT m | | |X|X|X|X|Store GDTR to m (6 bytes) | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 01 /1 |SIDT m | | |X|X|X|X|Store IDTR to m (6 bytes) | \------------------------------------------------------------------------------/ Description The SGDT and SIDT instructions copy the contents of the descriptor table register to the six bytes of memory indicated by the operand. The LIMIT field of the register is assigned to the first word at the effective address. If the operand-size attribute is 16 bits, the next three bytes are assigned the BASE field of the register, and the fourth byte is undefined. Otherwise, if the operand-size attribute is 32 bits, the next four bytes are assigned the 32-bit BASE field of the register. The SGDT and SIDT instructions are used only in operating system software; they are not used in application programs. Operation DEST � 48-bit BASE/LIMIT register contents; Protected Mode Exceptions Interrupt 6 if the destination operand is a register; #GP(0) if the destination is in a nonwritable segment; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 6 if the destination operand is a register; Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Compatibility Note The 16-bit forms of the SGDT and SIDT instruction are compatible with the Intel 286 processor, if the value in the upper eight bits is not referenced . The Intel 286 processor stores 1's in these upper bits, whereas the 32- bit processors store 0's if the operand-size attribute is 16 bits. These bits were specified as undefined by the SGDT and SIDT instructions in the 80286 Programming Reference Manual (Intel Order No. 210498). Related Information Compatibility Note Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions SHL/SHR-Shift Instruction See entry for SAL/SAR/SHL/SHR. SHLD-Double Precision Shift Left
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F A4 |SHLD r/m16,r16,imm8 | | | |X|X|X|r/m16 � SHL or r/m16 concatenated | | | | | | | | | |with r16 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F A4 |SHLD r/m32,r32,imm8 | | | |X|X|X|r/m32 � SHL of r/m32 concatenated | | | | | | | | | |with r32 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F A5 |SHLD r/m16,r16,CL | | | |X|X|X|r/m16 � SHL of r/m16 concatenated | | | | | | | | | |with r16 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F A5 |SHLD r/m32,r32,CL | | | |X|X|X|r/m32 � SHL of r/m32 concatenated | | | | | | | | | |with r32 | \------------------------------------------------------------------------------/
The SHLD instruction shifts the first operand provided by the r/m field to the left as many bits as specified by the count operand. The second operand (r16 or r32) provides the bits to shift in from the right (starting with bit 0). The result is stored back into the r/m operand. The register remains unaltered. The count operand is provided by either an immediate byte or the contents of the CL register. These operands are taken MODULO 32 to provide a number between 0 and 31 by which to shift. Because the bits to shift are provided by the specified registers, the operation is useful for multi-precision shifts (64 bits or more). The SF, ZF and PF flags are set according to the value of the result. The CF flag is set to the value of the last bit shifted out. The OF and AF flags are left undefined.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F A4 |SHLD r/m16,r16,imm8 | | | |X|X|X|r/m16 � SHL or r/m16 concatenated | | | | | | | | | |with r16 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F A4 |SHLD r/m32,r32,imm8 | | | |X|X|X|r/m32 � SHL of r/m32 concatenated | | | | | | | | | |with r32 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F A5 |SHLD r/m16,r16,CL | | | |X|X|X|r/m16 � SHL of r/m16 concatenated | | | | | | | | | |with r16 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F A5 |SHLD r/m32,r32,CL | | | |X|X|X|r/m32 � SHL of r/m32 concatenated | | | | | | | | | |with r32 | \------------------------------------------------------------------------------/ Description The SHLD instruction shifts the first operand provided by the r/m field to the left as many bits as specified by the count operand. The second operand (r16 or r32) provides the bits to shift in from the right (starting with bit 0). The result is stored back into the r/m operand. The register remains unaltered. The count operand is provided by either an immediate byte or the contents of the CL register. These operands are taken MODULO 32 to provide a number between 0 and 31 by which to shift. Because the bits to shift are provided by the specified registers, the operation is useful for multi-precision shifts (64 bits or more). The SF, ZF and PF flags are set according to the value of the result. The CF flag is set to the value of the last bit shifted out. The OF and AF flags are left undefined. Operation (* count is an unsigned integer corresponding to the last operand of the instruction, either an immediate byte or the byte in register CL *) ShiftAmt � count MOD 32; inBits � register; (* Allow overlapped operands *) IF ShiftAmt = 0 THEN no operation ELSE IF ShiftAmt ò OperandSize THEN (* Bad parameters *) r/m � UNDEFINED; CF, OF, SF, ZF, AF, PF � UNDEFINED; ELSE (* Perform the shift *) CF � BIT[Base, OperandSize - ShiftAmt]; (* Last bit shifted out on exit *) FOR i � OperandSize - 1 DOWNTO ShiftAmt DO BIT[Base, i] � BIT[Base, i - ShiftAmt]; OF; FOR i � ShiftAmt - 1 DOWNTO 0 DO BIT[Base, i] � BIT[inBits, i - ShiftAmt + OperandSize]; OD; Set SF, ZF, PF (r/m); (* SF, ZF, PF are set according to the value of the result *) AF � UNDEFINED; FI; FI; Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| |? | | |* |* |? |* |* | \-----------------------/ If count = 0, the flags are not affected. The SF, ZF, and PF flags are set according to the result; the CF flag is set to the value of the last bit shifted out; after a shift of one bit position, the OF flag is set if a sign change occurred, otherwise it is cleared; after a shift of more than one bit position, the OF flag is undefined; the AF flag is undefined, except for a shift count of zero, which does not affect any flags. Protected Mode Exceptions #GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS (0) for an illegal address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions SHRD-Double Precision Shift Right
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F AC |SHRD r/m16,r16,imm8 | | | |X|X|X|r/m16 � SHR of r/m16 concatenated | | | | | | | | | |with r16 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F AC |SHRD r/m32,r32,imm8 | | | |X|X|X|r/m32 � SHR of r/m32 concatenated | | | | | | | | | |with r32 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F AD |SHRD r/m16,r16,CL | | | |X|X|X|r/m16 � SHR of r/m16 concatenated | | | | | | | | | |with r16 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F AD |SHRD r/m32,r32,CL | | | |X|X|X|r/m32 � SHR of r/m32 concatenated | | | | | | | | | |with r32 | \------------------------------------------------------------------------------/
The SHRD instruction shifts the first operand provided by the r/m field to the right as many bits as specified by the count operand. The second operand (r16 or r32) provides the bits to shift in from the left (starting with bit 31). The result is stored back into the r/m operand. The register remains unaltered. The count operand is provided by either an immediate byte or the contents of the CL register. These operands are taken MODULO 32 to provide a number between 0 and 31 by which to shift. Because the bits to shift are provided by the specified register, the operation is useful for multi-precision shifts (64 bits or more). The SF, ZF and PF flags are set according to the value of the result. The CF flag is set to the value of the last bit shifted out. The OF and AF flags are left undefined.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F AC |SHRD r/m16,r16,imm8 | | | |X|X|X|r/m16 � SHR of r/m16 concatenated | | | | | | | | | |with r16 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F AC |SHRD r/m32,r32,imm8 | | | |X|X|X|r/m32 � SHR of r/m32 concatenated | | | | | | | | | |with r32 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F AD |SHRD r/m16,r16,CL | | | |X|X|X|r/m16 � SHR of r/m16 concatenated | | | | | | | | | |with r16 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F AD |SHRD r/m32,r32,CL | | | |X|X|X|r/m32 � SHR of r/m32 concatenated | | | | | | | | | |with r32 | \------------------------------------------------------------------------------/ Description The SHRD instruction shifts the first operand provided by the r/m field to the right as many bits as specified by the count operand. The second operand (r16 or r32) provides the bits to shift in from the left (starting with bit 31). The result is stored back into the r/m operand. The register remains unaltered. The count operand is provided by either an immediate byte or the contents of the CL register. These operands are taken MODULO 32 to provide a number between 0 and 31 by which to shift. Because the bits to shift are provided by the specified register, the operation is useful for multi-precision shifts (64 bits or more). The SF, ZF and PF flags are set according to the value of the result. The CF flag is set to the value of the last bit shifted out. The OF and AF flags are left undefined. Operation (* count is an unsigned integer corresponding to the last operand of the instruction, either an immediate byte or the byte in register CL *) ShiftAmt � count MOD 32; inBits � register; (* Allow overlapped operands *) IF ShiftAmt = 0 THEN no operation ELSE IF ShiftAmt ò OperandSize THEN (* Bad parameters *) r/m � UNDEFINED; CF, OF, SF, ZF, AF, PF � UNDEFINED; ELSE (* Perform the shift *) CF � BIT[r/m, ShiftAmt - 1]; (* last bit shifted out on exit *) FOR i � 0 TO OperandSize - 1 - ShiftAmt DO BIT[r/m, i] � BIT[r/m, i - ShiftAmt]; OD; FOR i � OperandSize - ShiftAmt TO OperandSize-1 DO BIT[r/m,i] � BIT[inBits,i+ShiftAmt - OperandSize]; OD; (* SF, ZF, PF are set according to the value of the result *) Set SF, ZF, PF (r/m); AF �UNDEFINED; FI; FI; Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| |? | | |* |* |? |* |* | \-----------------------/ If count = 0, the flags are not affected. The SF, ZF, and PF flags are set according to the result; the CF flag is set to the value of the last bit shifted out; after a shift of one bit position, the OF flag is set if a sign change occurred, otherwise it is cleared; after a shift of more than one bit position, the OF flag is undefined; the AF flag is undefined, except for a shift count of zero, which does not affect any flags. Protected Mode Exceptions #GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS (0) for an illegal address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the current privilege level is 3. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions SIDT-Store Interrupt Descriptor Table Register See entry for SGDT/SIDT. SLDT-Store Local Descriptor Table Register
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 00 /0 |SLDT r/m16 | | |X|X|X|X|Store LDTR to EA word | \------------------------------------------------------------------------------/
The SLDT instruction stores the Local Descriptor Table Register (LDTR) in the two-byte register or memory location indicated by the effective address operand. This register is a selector that points into the Global Descriptor Table. The SLDT instruction is used only in operating system software. It is not used in application programs.
Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 00 /0 |SLDT r/m16 | | |X|X|X|X|Store LDTR to EA word | \------------------------------------------------------------------------------/ Description The SLDT instruction stores the Local Descriptor Table Register (LDTR) in the two-byte register or memory location indicated by the effective address operand. This register is a selector that points into the Global Descriptor Table. The SLDT instruction is used only in operating system software. It is not used in application programs. Operation r/m16 � LDTR; Protected Mode Exceptions #GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS (0) for an illegal address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 6; the SLDT instruction is not recognized in Real Address Mode. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode (because the instruction is not recognized, it will not run or perform a memory reference). Notes When the destination is a 32-bit register, the 16-bit source operand is copied into the lower 16 bits of the destination register, and the upper 16 bits of the register are undefined. With a 16-bit register operand, only the lower 16 bits of the destination are affected (the upper 16 bits remain unchanged). With a memory operand, the source is written to memory as a 16- bit quantity, regardless of operand size. As a result, 32-bit software should always treat the destination as 16-bits and mask bits 16-31, if necessary. Related Information Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions SMSW-Store Machine Status Word
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 01 /4 |SMSW r/m16 | | |X|X|X|X|Store machine status word to EA | | | | | | | | | |word | \------------------------------------------------------------------------------/
The SMSW instruction stores the machine status word (part of the CR0 register) in the two-byte register or memory location indicated by the effective address operand.
Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 01 /4 |SMSW r/m16 | | |X|X|X|X|Store machine status word to EA | | | | | | | | | |word | \------------------------------------------------------------------------------/ Description The SMSW instruction stores the machine status word (part of the CR0 register) in the two-byte register or memory location indicated by the effective address operand. Operation r/m16 � MSW; Protected Mode Exceptions #GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS (0) for an illegal address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode, #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Notes This instruction is provided for compatibility with the Intel 286 processor ; programs for the Pentium processor should use the MOV ..., CR0 instruction. When the destination is a 32-bit register, the 16-bit source operand is copied into the lower 16 bits of the destination register, and the upper 16 bits of the register are undefined. With a 16-bit register operand, only the lower 16 bits of the destination are affected (the upper 16 bits remain unchanged). With a memory operand, the source is written to memory as a 16- bit quantity, regardless of operand size. As a result, 32-bit software should always treat the destination as 16-bits and mask bits 16-31, if necessary. Related Information Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions STC-Set Carry Flag
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F9 |STC |X|X|X|X|X|X|Set carry flag | \------------------------------------------------------------------------------/
The STC instruction sets the CF flag.
Description Flags Affected Operation Protected Mode Exceptions Protected Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F9 |STC |X|X|X|X|X|X|Set carry flag | \------------------------------------------------------------------------------/ Description The STC instruction sets the CF flag. Operation CF � 1; Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| | | | | | | | |1 | \-----------------------/ The CF flag is set. Related Information Description Flags Affected Operation Protected Mode Exceptions Protected Mode Exceptions Virtual 8086 Mode Exceptions STD-Set Direction Flag
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FD |STD |X|X|X|X|X|X|Set direction flag so that [(E)SI]| | | | | | | | | |and/or [(E)DI] decrement | \------------------------------------------------------------------------------/
The STD instruction sets the direction flag, causing all subsequent string operations to decrement the index registers, (E)SI and/or (E)DI, on which they operate.
Description Flags Affected Operation Protected Mode Exceptions Protected Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FD |STD |X|X|X|X|X|X|Set direction flag so that [(E)SI]| | | | | | | | | |and/or [(E)DI] decrement | \------------------------------------------------------------------------------/ Description The STD instruction sets the direction flag, causing all subsequent string operations to decrement the index registers, (E)SI and/or (E)DI, on which they operate. Operation DF � 1; Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| | |1 | | | | | | | \-----------------------/ The DF flag is set. Related Information Description Flags Affected Operation Protected Mode Exceptions Protected Mode Exceptions Virtual 8086 Mode Exceptions STI-Set Interrupt Flag
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FB |STI |X|X|X|X|X|X|Set interrupt flag | \------------------------------------------------------------------------------/
The STI instruction sets the IF. The processor then responds to external interrupts after running the next instruction if the next instruction allows the IF flag to remain enabled. If external interrupts are disabled and the STI instruction is followed by the RET instruction (such as at the end of a subroutine), the RET instruction is allowed to run before external interrupts are recognized. Also, if external interrupts are disabled and the STI instruction is followed by a CLI instruction, which clears the IF flag, then external interrupts are not recognized because the CLI instruction clears the IF flag during its processing.
Decision Table Description Flags Affected Notes Operation Protected Mode Exceptions Protected Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |FB |STI |X|X|X|X|X|X|Set interrupt flag | \------------------------------------------------------------------------------/ Description The STI instruction sets the IF. The processor then responds to external interrupts after running the next instruction if the next instruction allows the IF flag to remain enabled. If external interrupts are disabled and the STI instruction is followed by the RET instruction (such as at the end of a subroutine), the RET instruction is allowed to run before external interrupts are recognized. Also, if external interrupts are disabled and the STI instruction is followed by a CLI instruction, which clears the IF flag, then external interrupts are not recognized because the CLI instruction clears the IF flag during its processing. Operation IF PE=0 (* Running in real-address mode *) THEN IF � 1; (* Set Interrupt Flag *) ELSE (* Running in protected mode or virtual-8086 mode *) IF VM=0 (* Running in protected mode *) THEN IF IOPL=3 THEN IF � 1; (* Set Interrupt Flag *) ELSE IF CPL òIOPL THEN IF � 1; ELSE #GP(0); FI; FI; ELSE (* Running in Virtual-8086 mode *) #GP(0); (* Trap to virtual-8086 monitor *) FI; FI; Decision Table The following decision table indicates which action in the lower portion of the table is taken given the conditions in the upper portion of the table. /------------------------------------------\ |PE = | 0 | 1 | 1 | 1 | |----------+-------+-------+-------+-------| |VM = | - | 0 | 0 | 1 | |----------+-------+-------+-------+-------| |CPL | - |ò IOPL |> IOPL | = 3 | |----------+-------+-------+-------+-------| |IOPL | - | - | - | = 3 | |----------+-------+-------+-------+-------| |IF � 1 | Y | Y | | Y | |----------+-------+-------+-------+-------| |#GP(0) | | | Y | | \------------------------------------------/ Notes: - Don't care Blank Action not taken Y Action in Column 1 taken Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| | | |1 | | | | | | \-----------------------/ The IF flag is set. Protected Mode Exceptions #GP(0) if the current privilege level is greater (has less privilege) than the I/O privilege level. Virtual 8086 Mode Exceptions #GP(0) as for protected mode. Notes In case of an NMI, trap, or fault following STI the interrupt will be taken before running the next sequential instruction in the code. For information on this instruction when using virtual mode extensions, see the Intel documentation. Related Information Decision Table Description Flags Affected Notes Operation Protected Mode Exceptions Protected Mode Exceptions Virtual 8086 Mode Exceptions STOS/STOSB/STOSW/STOSD-Store String Data
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |AA |STOS m8 |X|X|X|X|X|X|Store AL in byte at ES:[(E)DI], | | | | | | | | | |update [(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |AB |STOS m16 |X|X|X|X|X|X|Store AX in word at ES:[(E)DI], | | | | | | | | | |update [(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |AB |STOS m32 | | | |X|X|X|Store EAX in dword at ES:[(E)DI], | | | | | | | | | |update [(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |AA |STOSB |X|X|X|X|X|X|Store AL in byte at ES:[(E)DI], | | | | | | | | | |update [(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |AB |STOSW |X|X|X|X|X|X|Store AX in word at ES:[(E)DI], | | | | | | | | | |update [(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |AB |STOSD | | | |X|X|X|Store EAX in dword at ES:[(E)DI], | | | | | | | | | |update [(E)DI] | \------------------------------------------------------------------------------/
The STOS instruction transfers the contents of the AL, AX, or EAX register to the memory byte or word given by the destination register relative to the ES segment. The destination register is the DI register for an address- size attribute of 16 bits or the EDI register for an address-size attribute of 32 bits. The destination operand must be addressable from the ES register. A segment override is not possible. The address of the destination is determined by the contents of the destination register, not by the explicit operand of the STOS instruction. This operand is used only to validate ES segment addressability and to determine the data type. Load the correct index value into the destination register before running the STOS instruction. After the transfer is made, the (E)DI register is automatically updated. If the DF flag is 0 (the CLD instruction was run), the (E)DI register is incremented; if the DF flag is 1 (the STD instruction was executed), the (E )DI register is decremented. The (E)DI register is incremented or decremented by 1 if a byte is stored, by 2 if a word is stored, or by 4 if a doubleword is stored. The STOSB, STOSW, and STOSD instructions are synonyms for the byte, word, and doubleword STOS instructions, that do not require an operand. They are simpler to use, but provide no type or segment checking. The STOS instruction can be preceded by the REP prefix for a block fill of CX or ECX bytes, words, or doublewords. Refer to the REP instruction for further details.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |AA |STOS m8 |X|X|X|X|X|X|Store AL in byte at ES:[(E)DI], | | | | | | | | | |update [(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |AB |STOS m16 |X|X|X|X|X|X|Store AX in word at ES:[(E)DI], | | | | | | | | | |update [(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |AB |STOS m32 | | | |X|X|X|Store EAX in dword at ES:[(E)DI], | | | | | | | | | |update [(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |AA |STOSB |X|X|X|X|X|X|Store AL in byte at ES:[(E)DI], | | | | | | | | | |update [(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |AB |STOSW |X|X|X|X|X|X|Store AX in word at ES:[(E)DI], | | | | | | | | | |update [(E)DI] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |AB |STOSD | | | |X|X|X|Store EAX in dword at ES:[(E)DI], | | | | | | | | | |update [(E)DI] | \------------------------------------------------------------------------------/ Description The STOS instruction transfers the contents of the AL, AX, or EAX register to the memory byte or word given by the destination register relative to the ES segment. The destination register is the DI register for an address- size attribute of 16 bits or the EDI register for an address-size attribute of 32 bits. The destination operand must be addressable from the ES register. A segment override is not possible. The address of the destination is determined by the contents of the destination register, not by the explicit operand of the STOS instruction. This operand is used only to validate ES segment addressability and to determine the data type. Load the correct index value into the destination register before running the STOS instruction. After the transfer is made, the (E)DI register is automatically updated. If the DF flag is 0 (the CLD instruction was run), the (E)DI register is incremented; if the DF flag is 1 (the STD instruction was executed), the (E )DI register is decremented. The (E)DI register is incremented or decremented by 1 if a byte is stored, by 2 if a word is stored, or by 4 if a doubleword is stored. The STOSB, STOSW, and STOSD instructions are synonyms for the byte, word, and doubleword STOS instructions, that do not require an operand. They are simpler to use, but provide no type or segment checking. The STOS instruction can be preceded by the REP prefix for a block fill of CX or ECX bytes, words, or doublewords. Refer to the REP instruction for further details. Operation IF AddressSize = 16 THEN use ES:DI for DestReg ELSE (* AddressSize = 32 *) use ES:EDI for DestReg; FI; IF byte type of instruction THEN (ES:DestReg) � AL; IF DF = 0 THEN DestReg � DestReg + 1; ELSE DestReg � DestReg - 1; FI; ELSE IF OperandSize = 16 THEN (ES:DestReg) � AX; IF DF = 0 THEN DestReg � DestReg + 2; ELSE DestReg � DestReg - 2; FI; ELSE (* OperandSize = 32 *) (ES:DestReg) � EAX; IF DF = 0 THEN DestReg � DestReg + 4; ELSE DestReg � DestReg - 4; FI; FI; FI; Protected Mode Exceptions #GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand effective address in the ES segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions STR-Store Task Register
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 00 /1 |STR r/m16 | | |X|X|X|X|Store task register to EA word | \------------------------------------------------------------------------------/
The contents of the task register are copied to the two-byte register or memory location indicated by the effective address operand. The STR instruction is used only in operating system software. It is not used in application programs.
Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 00 /1 |STR r/m16 | | |X|X|X|X|Store task register to EA word | \------------------------------------------------------------------------------/ Description The contents of the task register are copied to the two-byte register or memory location indicated by the effective address operand. The STR instruction is used only in operating system software. It is not used in application programs. Operation r/m � task register; Protected Mode Exceptions #GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS (0) for an illegal address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 6; the STR instruction is not recognized in Real Address Mode. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode. Notes When the destination is a 32-bit register, the 16-bit source operand is copied into the lower 16 bits of the destination register, and the upper 16 bits of the register are undefined. With a 16-bit register operand, only the lower 16 bits of the destination are affected (the upper 16 bits remain unchanged). With a memory operand, the source is written to memory as a 16- bit quantity, regardless of operand size. As a result, 32-bit software should always treat the destination as 16-bits and mask bits 16-31, if necessary. Related Information Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions SUB-Integer Subtraction
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |2C ib |SUB AL,imm8 |X|X|X|X|X|X|AL � AL - immediate byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |2D iw |SUB AX,imm16 |X|X|X|X|X|X|AX � AX - immediate word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |2D id |SUB EAX,imm32 | | | |X|X|X|EAX � EAX - immediate dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |80 /5 ib |SUB r/m8,imm8 |X|X|X|X|X|X|r/m8 � r/m8 - immediate byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |81 /5 iw |SUB r/m16,imm16 |X|X|X|X|X|X|r/m16 � r/m16 - immediate word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |81 /5 id |SUB r/m32,imm32 | | | |X|X|X|r/m32 � r/m32 - immediate dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |83 /5 ib |SUB r/m16,imm8 |X|X|X|X|X|X|r/m16 � r/m16 - sign-extended | | | | | | | | | |immediate byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |83 /5 ib |SUB r/m32,imm8 | | | |X|X|X|r/m32 � r/m32 - sign-extended | | | | | | | | | |immediate byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |28 /r |SUB r/m8,r8 |X|X|X|X|X|X|r/m8 � r/m8 - byte register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |29 /r |SUB r/m16,r16 |X|X|X|X|X|X|r/m16 � r/m16 - word register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |29 /r |SUB r/m32,r32 | | | |X|X|X|r/m32 � r/m32 - dword register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |2A /r |SUB r8,r/m8 |X|X|X|X|X|X|r8 � r8 - r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |2B /r |SUB r16,r/m16 |X|X|X|X|X|X|r16 � r16 - r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |2B /r |SUB r32,r/m32 | | | |X|X|X|r32 � r32 - r/m dword | \------------------------------------------------------------------------------/
The SUB instruction subtracts the second operand (SRC) from the first operand (DEST). The first operand is assigned the result of the subtraction , and the flags are set accordingly. When an immediate byte value is subtracted from a word operand, the immediate value is first sign-extended to the size of the destination operand.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |2C ib |SUB AL,imm8 |X|X|X|X|X|X|AL � AL - immediate byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |2D iw |SUB AX,imm16 |X|X|X|X|X|X|AX � AX - immediate word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |2D id |SUB EAX,imm32 | | | |X|X|X|EAX � EAX - immediate dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |80 /5 ib |SUB r/m8,imm8 |X|X|X|X|X|X|r/m8 � r/m8 - immediate byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |81 /5 iw |SUB r/m16,imm16 |X|X|X|X|X|X|r/m16 � r/m16 - immediate word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |81 /5 id |SUB r/m32,imm32 | | | |X|X|X|r/m32 � r/m32 - immediate dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |83 /5 ib |SUB r/m16,imm8 |X|X|X|X|X|X|r/m16 � r/m16 - sign-extended | | | | | | | | | |immediate byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |83 /5 ib |SUB r/m32,imm8 | | | |X|X|X|r/m32 � r/m32 - sign-extended | | | | | | | | | |immediate byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |28 /r |SUB r/m8,r8 |X|X|X|X|X|X|r/m8 � r/m8 - byte register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |29 /r |SUB r/m16,r16 |X|X|X|X|X|X|r/m16 � r/m16 - word register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |29 /r |SUB r/m32,r32 | | | |X|X|X|r/m32 � r/m32 - dword register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |2A /r |SUB r8,r/m8 |X|X|X|X|X|X|r8 � r8 - r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |2B /r |SUB r16,r/m16 |X|X|X|X|X|X|r16 � r16 - r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |2B /r |SUB r32,r/m32 | | | |X|X|X|r32 � r32 - r/m dword | \------------------------------------------------------------------------------/ Description The SUB instruction subtracts the second operand (SRC) from the first operand (DEST). The first operand is assigned the result of the subtraction , and the flags are set accordingly. When an immediate byte value is subtracted from a word operand, the immediate value is first sign-extended to the size of the destination operand. Operation IF SRC is a byte and DEST is a word or dword THEN DEST = DEST - SignExtend(SRC); ELSE DEST � DEST - SRC; FI; Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| |* | | |* |* |* |* |* | \-----------------------/ The OF, SF, ZF, AF, PF, and CF flags are set according to the result. Protected Mode Exceptions #GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS (0) for an illegal address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions TEST-Logical Compare
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |A8 ib |TEST AL,imm8 |X|X|X|X|X|X|AND immediate byte with AL | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |A9 iw |TEST AX,imm16 |X|X|X|X|X|X|AND immediate word with AX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |A9 id |TEST EAX,imm32 | | | |X|X|X|AND immediate dword with EAX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F6 /0 ib |TEST r/m8,imm8 |X|X|X|X|X|X|AND immediate byte with r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F7 /0 iw |TEST r/m16,imm16 |X|X|X|X|X|X|AND immediate word with r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F7 /0 id |TEST r/m32,imm32 | | | |X|X|X|AND immediate dword with r/m dword| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |84 /r |TEST r/m8,r8 |X|X|X|X|X|X|AND byte register with r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |85 /r |TEST r/m16,r16 |X|X|X|X|X|X|AND word register with r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |85 /r |TEST r/m32,r32 | | | |X|X|X|AND dword register with r/m dword | \------------------------------------------------------------------------------/
The TEST instruction computes the bit-wise logical AND of its two operands. Each bit of the result is 1 if both of the corresponding bits of the operands are 1; otherwise, each bit is 0. The result of the operation is discarded and only the flags are modified.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |A8 ib |TEST AL,imm8 |X|X|X|X|X|X|AND immediate byte with AL | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |A9 iw |TEST AX,imm16 |X|X|X|X|X|X|AND immediate word with AX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |A9 id |TEST EAX,imm32 | | | |X|X|X|AND immediate dword with EAX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F6 /0 ib |TEST r/m8,imm8 |X|X|X|X|X|X|AND immediate byte with r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F7 /0 iw |TEST r/m16,imm16 |X|X|X|X|X|X|AND immediate word with r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |F7 /0 id |TEST r/m32,imm32 | | | |X|X|X|AND immediate dword with r/m dword| |----------+--------------------+-+-+-+-+-+-+----------------------------------| |84 /r |TEST r/m8,r8 |X|X|X|X|X|X|AND byte register with r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |85 /r |TEST r/m16,r16 |X|X|X|X|X|X|AND word register with r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |85 /r |TEST r/m32,r32 | | | |X|X|X|AND dword register with r/m dword | \------------------------------------------------------------------------------/ Description The TEST instruction computes the bit-wise logical AND of its two operands. Each bit of the result is 1 if both of the corresponding bits of the operands are 1; otherwise, each bit is 0. The result of the operation is discarded and only the flags are modified. Operation DEST : = LeftSRC AND RightSRC; CF � 0; OF � 0; Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| |0 | | |* |* |? |* |0 | \-----------------------/ The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. Protected Mode Exceptions #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF( fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions VERR, VERW-Verify a Segment for Reading or Writing
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 00 /4 |VERR r/m16 | | |X|X|X|X|Set ZF=1 if segment can be read, | | | | | | | | | |selector in r/m16 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 00 /5 |VERW r/m16 | | |X|X|X|X|Set ZF=1 if segment can be | | | | | | | | | |written, selector in r/m16 | \------------------------------------------------------------------------------/
The two-byte register or memory operand of the VERR and VERW instructions contains the value of a selector. The VERR and VERW instructions determine whether the segment denoted by the selector is reachable from the current privilege level and whether the segment is readable (VERR) or writable ( VERW). If the segment is accessible, the ZF flag is set; if the segment is not accessible, the ZF flag is cleared. To set the ZF flag, the following conditions must be met: �The selector must denote a descriptor within the bounds of the table (GDT or LDT); the selector must be "defined." �The selector must denote the descriptor of a code or data segment (not that of a task state segment, LDT, or a gate). �For the VERR instruction, the segment must be readable. For the VERW instruction, the segment must be a writable data segment. �If the code segment is readable and conforming, the descriptor privilege level (DPL) can be any value for the VERR instruction. Otherwise, the DPL must be greater than or equal to (have less or the same privilege as) both the current privilege level and the selector's RPL. The validation performed is the same as if the segment were loaded into the DS, ES, FS, or GS register, and the indicated access (read or write) were performed. The ZF flag receives the result of the validation. The selector' s value cannot result in a protection exception, enabling the software to anticipate possible segment access problems.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 00 /4 |VERR r/m16 | | |X|X|X|X|Set ZF=1 if segment can be read, | | | | | | | | | |selector in r/m16 | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 00 /5 |VERW r/m16 | | |X|X|X|X|Set ZF=1 if segment can be | | | | | | | | | |written, selector in r/m16 | \------------------------------------------------------------------------------/ Description The two-byte register or memory operand of the VERR and VERW instructions contains the value of a selector. The VERR and VERW instructions determine whether the segment denoted by the selector is reachable from the current privilege level and whether the segment is readable (VERR) or writable ( VERW). If the segment is accessible, the ZF flag is set; if the segment is not accessible, the ZF flag is cleared. To set the ZF flag, the following conditions must be met: �The selector must denote a descriptor within the bounds of the table (GDT or LDT); the selector must be "defined." �The selector must denote the descriptor of a code or data segment (not that of a task state segment, LDT, or a gate). �For the VERR instruction, the segment must be readable. For the VERW instruction, the segment must be a writable data segment. �If the code segment is readable and conforming, the descriptor privilege level (DPL) can be any value for the VERR instruction. Otherwise, the DPL must be greater than or equal to (have less or the same privilege as) both the current privilege level and the selector's RPL. The validation performed is the same as if the segment were loaded into the DS, ES, FS, or GS register, and the indicated access (read or write) were performed. The ZF flag receives the result of the validation. The selector' s value cannot result in a protection exception, enabling the software to anticipate possible segment access problems. Operation IF segment with selector at (r/m) is accessible with current protection level AND ((segment is readable for VERR) OR (segment is writable for VERW)) THEN ZF � 1; ELSE ZF � 0; FI; Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| | | | | |* | | | | \-----------------------/ The ZF flag is set if the segment is accessible, cleared if it is not. Protected Mode Exceptions Faults generated by illegal addressing of the memory operand that contains the selector; the selector is not loaded into any segment register, and no faults attributable to the selector operand are generated. #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF( fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 6; the VERR and VERW instructions are not recognized in Real Address Mode. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the current privilege level is 3. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions WAIT-Wait
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9B |WAIT |X|X|X|X|X|X|Causes processor to check for | | | | | | | | | |numeric exceptions | \------------------------------------------------------------------------------/
WAIT causes the processor to check for pending unmasked numeric exceptions before proceeding.
Description Flags Affected Notes Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |9B |WAIT |X|X|X|X|X|X|Causes processor to check for | | | | | | | | | |numeric exceptions | \------------------------------------------------------------------------------/ Description WAIT causes the processor to check for pending unmasked numeric exceptions before proceeding. Protected Mode Exceptions #NM if both MP and TS in CR0 are set. Real Address Mode Exceptions Interrupt 7 if both MP and TS is CR0 are set. Virtual 8086 Mode Exceptions #NM if both MP and TS in CR0 are set. Notes Coding WAIT after an ESC instruction ensures that any unmasked floating- point exceptions the instruction may cause are handled before the processor has a chance to modify the instruction's results. FWAIT is an alternate mnemonic for WAIT. Refer to the Intel documentation for more information about when to use WAIT (FWAIT). Related Information Description Flags Affected Notes Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions WBINVD-Write-Back and Invalidate Cache
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 09 |WBINVD | | | | |X|X|Write-back and invalidate entire | | | | | | | | | |cache | \------------------------------------------------------------------------------/
The internal cache is flushed, and a special-function bus cycle is issued, which indicates that external cache should write-back its contents to main memory. Another special-function bus cycle follows, directing the external cache to flush itself.
Description Flags Affected Notes Operation Protected Mode Exceptions Protected Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 09 |WBINVD | | | | |X|X|Write-back and invalidate entire | | | | | | | | | |cache | \------------------------------------------------------------------------------/ Description The internal cache is flushed, and a special-function bus cycle is issued, which indicates that external cache should write-back its contents to main memory. Another special-function bus cycle follows, directing the external cache to flush itself. Operation FLUSH INTERNAL CACHE SIGNAL EXTERNAL CACHE TO WRITE-BACK SIGNAL EXTERNAL CACHE TO FLUSH Protected Mode Exceptions The WBINVD instruction is a privileged instruction; #GP(0) if the current privilege level is not 0. Virtual 8086 Mode Exceptions #GP(0); the WBINVD instruction is a privileged instruction. Notes INVD should be used with care. It does not write back modified cache lines; therefore, it can cause the data cache to become inconsistent with other memories in the system. Unless there is a specific requirement or benefit to invalidate a cache without writing back the modified lines (i.e., testing or fault recovery where cache coherency with main memory is not a concern), software should use the WBINVD instruction. This instruction is implementation-dependent; its function may be implemented differently on future Intel processors. It is the responsibility of hardware to respond to the external cache write -back and flush indications. This instruction is not supported on Intel386 processors. See the Intel documentation for information on detecting the processor type at runtime. See the Intel documentation for information on disabling the cache. Related Information Description Flags Affected Notes Operation Protected Mode Exceptions Protected Mode Exceptions Virtual 8086 Mode Exceptions WRMSR-Write to Model Specific Register
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 30 |WRMSR | | | | | |X|Write the value in EDX:EAX to | | | | | | | | | |Model Specific Register indicated | | | | | | | | | |by ECX | \------------------------------------------------------------------------------/
The value in ECX specifies one of the 64-bit Model Specific Registers of the Pentium processor. The contents of EDX:EAX is copied into that Model- Specific Register. The high-order 32 bits are copied from EDX and the low- order 32 bits are copied from EAX. The following values are used to select model specific registers on the Pentium processor: /-------------------------------------------------------------------------------\ | VALUE |REGISTER NAME |DESCRIPTION | |-------+----------------------+------------------------------------------------| | 00H |Machine Check Address |Stores address of cycle causing the exception | |-------+----------------------+------------------------------------------------| | 01H |Machine Check Type |Stores cycle type of cycle causing the exception| \-------------------------------------------------------------------------------/ For other values used to perform cache, TLB, and BTB testing and performance monitoring, see the Intel documentation.
Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F 30 |WRMSR | | | | | |X|Write the value in EDX:EAX to | | | | | | | | | |Model Specific Register indicated | | | | | | | | | |by ECX | \------------------------------------------------------------------------------/ Description The value in ECX specifies one of the 64-bit Model Specific Registers of the Pentium processor. The contents of EDX:EAX is copied into that Model- Specific Register. The high-order 32 bits are copied from EDX and the low- order 32 bits are copied from EAX. The following values are used to select model specific registers on the Pentium processor: /-------------------------------------------------------------------------------\ | VALUE |REGISTER NAME |DESCRIPTION | |-------+----------------------+------------------------------------------------| | 00H |Machine Check Address |Stores address of cycle causing the exception | |-------+----------------------+------------------------------------------------| | 01H |Machine Check Type |Stores cycle type of cycle causing the exception| \-------------------------------------------------------------------------------/ For other values used to perform cache, TLB, and BTB testing and performance monitoring, see the Intel documentation. Operation MSR[ECX] � EDX:EAX; Protected Mode Exceptions #GP(0) if either the current privilege level is not 0 or the value in ECX does not specify a Model-Specific Register that is implemented in the Pentium processor. Real Address Mode Exceptions #GP(0) if the value in ECX does not specify a Model-Specific Register that is implemented in the Pentium processor. No error code is pushed. Virtual 8086 Mode Exceptions #GP(0) if instruction execution is attempted. Notes Always set undefined or reserved bits to the value previously read. WRMSR is used to write the content of Model-Specific Registers that control functions for testability, execution tracing, performance monitoring, and machine check errors. Refer to the Pentium(TM) Processor Data Book for more information. The values 3H, 0FH, and values above 13H are reserved. Do not execute WRMSR with reserved values in ECX. Related Information Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions XADD-Exchange and Add
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F C0 /r |XADD r/m8,r8 | | | | |X|X|Exchange byte register and r/m | | | | | | | | | |byte; load sum into r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F C1 /r |XADD r/m16,r16 | | | | |X|X|Exchange word register and r/m | | | | | | | | | |word; load sum into r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F C1 /r |XADD r/m32,r32 | | | | |X|X|Exchange dword register and r/m | | | | | | | | | |dword; load sum into r/m dword | \------------------------------------------------------------------------------/
The XADD instruction loads DEST into SRC, and then loads the sum of DEST and the original value of SRC into DEST.
Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F C0 /r |XADD r/m8,r8 | | | | |X|X|Exchange byte register and r/m | | | | | | | | | |byte; load sum into r/m byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F C1 /r |XADD r/m16,r16 | | | | |X|X|Exchange word register and r/m | | | | | | | | | |word; load sum into r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |0F C1 /r |XADD r/m32,r32 | | | | |X|X|Exchange dword register and r/m | | | | | | | | | |dword; load sum into r/m dword | \------------------------------------------------------------------------------/ Description The XADD instruction loads DEST into SRC, and then loads the sum of DEST and the original value of SRC into DEST. Operation TEMP � SRC + DEST SRC � DEST DEST � TEMP Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| |* | | |* |* |* |* |* | \-----------------------/ The CF, PF, AF, SF, ZF, and OF flags are affected as if an ADD instruction had been executed. Protected Mode Exceptions #GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS (0) for an illegal address in the SS segment; #PF(fault-code) for a page fault; #NM if either EM or TS in CR0 is set, #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in real-address mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Notes This instruction can be used with a LOCK prefix. The Intel386 DX microprocessor does not implement this instruction. If this instruction is used, you should provide an equivalent code sequence that runs on an Intel386 DX processor as well. See the Intel documentation for details on how to detect a particular processor at runtime. Related Information Description Flags Affected Notes Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions XCHG-Exchange Register/Memory with Register
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |90+rw |XCHG AX,r16 |X|X|X|X|X|X|Exchange word register with AX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |90+rd |XCHG EAX,r32 | | | |X|X|X|Exchange dword register with EAX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |90+rw |XCHG r16,AX |X|X|X|X|X|X|Exchange word register with AX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |90+rd |XCHG r32,EAX | | | |X|X|X|Exchange dword register with EAX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |86 /r |XCHG r/m8,r8 |X|X|X|X|X|X|Exchange byte register with EA | | | | | | | | | |byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |86 /r |XCHG r8,r/m8 |X|X|X|X|X|X|Exchange byte register with EA | | | | | | | | | |byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |87 /r |XCHG r/m16,r16 |X|X|X|X|X|X|Exchange word register with EA | | | | | | | | | |word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |87 /r |XCHG r/m32,r32 | | | |X|X|X|Exchange dword register with EA | | | | | | | | | |dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |87 /r |XCHG r16,r/m16 |X|X|X|X|X|X|Exchange word register with EA | | | | | | | | | |word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |87 /r |XCHG r32,r/m32 | | | |X|X|X|Exchange dword register with EA | | | | | | | | | |dword | \------------------------------------------------------------------------------/
The XCHG instruction exchanges two operands. The operands can be in either order. If a memory operand is involved, the LOCK# signal is asserted for the duration of the exchange, regardless of the presence or absence of the LOCK prefix or of the value of the IOPL.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |90+rw |XCHG AX,r16 |X|X|X|X|X|X|Exchange word register with AX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |90+rd |XCHG EAX,r32 | | | |X|X|X|Exchange dword register with EAX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |90+rw |XCHG r16,AX |X|X|X|X|X|X|Exchange word register with AX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |90+rd |XCHG r32,EAX | | | |X|X|X|Exchange dword register with EAX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |86 /r |XCHG r/m8,r8 |X|X|X|X|X|X|Exchange byte register with EA | | | | | | | | | |byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |86 /r |XCHG r8,r/m8 |X|X|X|X|X|X|Exchange byte register with EA | | | | | | | | | |byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |87 /r |XCHG r/m16,r16 |X|X|X|X|X|X|Exchange word register with EA | | | | | | | | | |word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |87 /r |XCHG r/m32,r32 | | | |X|X|X|Exchange dword register with EA | | | | | | | | | |dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |87 /r |XCHG r16,r/m16 |X|X|X|X|X|X|Exchange word register with EA | | | | | | | | | |word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |87 /r |XCHG r32,r/m32 | | | |X|X|X|Exchange dword register with EA | | | | | | | | | |dword | \------------------------------------------------------------------------------/ Description The XCHG instruction exchanges two operands. The operands can be in either order. If a memory operand is involved, the LOCK# signal is asserted for the duration of the exchange, regardless of the presence or absence of the LOCK prefix or of the value of the IOPL. Operation temp � DEST DEST � SRC SRC � temp Protected Mode Exceptions #GP(0) if either operand is in a nonwritable segment; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS (0) for an illegal address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Note XCHG can be used for BSWAP for 16-bit data. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions XLAT/XLATB-Table Look-up Translation
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D7 |XLAT m8 |X|X|X|X|X|X|Set AL to memory byte DS:[(E)BX + | | | | | | | | | |unsigned AL] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D7 |XLATB |X|X|X|X|X|X|Set AL to memory byte DS:[(E)BX + | | | | | | | | | |unsigned AL] | \------------------------------------------------------------------------------/
The XLAT instruction changes the AL register from the table index to the table entry. The AL register should be the unsigned index into a table addressed by the DS:BX register pair (for an address-size attribute of 16 bits) or the DS:EBX register pair (for an address-size attribute of 32 bits ). The operand to the XLAT instruction allows for the possibility of a segment override. The XLAT instruction uses the contents of the BX register even if they differ from the offset of the operand. The offset of the operand should have been moved into the BX or EBX register with a previous instruction. The no-operand form, the XLATB instruction, can be used if the BX or EBX table will always reside in the DS segment.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D7 |XLAT m8 |X|X|X|X|X|X|Set AL to memory byte DS:[(E)BX + | | | | | | | | | |unsigned AL] | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |D7 |XLATB |X|X|X|X|X|X|Set AL to memory byte DS:[(E)BX + | | | | | | | | | |unsigned AL] | \------------------------------------------------------------------------------/ Description The XLAT instruction changes the AL register from the table index to the table entry. The AL register should be the unsigned index into a table addressed by the DS:BX register pair (for an address-size attribute of 16 bits) or the DS:EBX register pair (for an address-size attribute of 32 bits ). The operand to the XLAT instruction allows for the possibility of a segment override. The XLAT instruction uses the contents of the BX register even if they differ from the offset of the operand. The offset of the operand should have been moved into the BX or EBX register with a previous instruction. The no-operand form, the XLATB instruction, can be used if the BX or EBX table will always reside in the DS segment. Operation IF AddressSize = 16 THEN AL � (BX + ZeroExtend(AL)) ELSE (* AddressSize = 32 *) AL � (EBX + ZeroExtend(AL)); FI; Protected Mode Exceptions #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF( fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions XOR-Logical Exclusive OR
/------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |34 ib |XOR AL,imm8 |X|X|X|X|X|X|Exclusive-OR immediate byte to AL | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |35 iw |XOR AX,imm16 |X|X|X|X|X|X|Exclusive-OR immediate word to AX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |35 id |XOR EAX,imm32 | | | |X|X|X|Exclusive-OR immediate dword to | | | | | | | | | |EAX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |80 /6 ib |XOR r/m8,imm8 |X|X|X|X|X|X|Exclusive-OR immediate byte to r/m| | | | | | | | | |byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |81 /6 iw |XOR r/m16,imm16 |X|X|X|X|X|X|Exclusive-OR immediate word to r/m| | | | | | | | | |word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |81 /6 id |XOR r/m32,imm32 | | | |X|X|X|Exclusive-OR immediate dword to | | | | | | | | | |r/m dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |83 /6 ib |XOR r/m16,imm8 | | | |X|X|X|XOR sign-extended immediate byte | | | | | | | | | |to r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |83 /6 ib |XOR r/m32,imm8 | | | |X|X|X|XOR sign-extended immediate byte | | | | | | | | | |with r/m dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |30 /r |XOR r/m8,r8 |X|X|X|X|X|X|Exclusive-OR byte register to r/m | | | | | | | | | |byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |31 /r |XOR r/m16,r16 |X|X|X|X|X|X|Exclusive-OR word register to r/m | | | | | | | | | |word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |31 /r |XOR r/m32,r32 | | | |X|X|X|Exclusive-OR dword register to r/m| | | | | | | | | |dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |32 /r |XOR r8,r/m8 |X|X|X|X|X|X|Exclusive-OR r/m byte to byte | | | | | | | | | |register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |33 /r |XOR r16,r/m16 |X|X|X|X|X|X|Exclusive-OR r/m word to word | | | | | | | | | |register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |33 /r |XOR r32,r/m32 | | | |X|X|X|Exclusive-OR r/m dword to dword | | | | | | | | | |register | \------------------------------------------------------------------------------/
The XOR instruction computes the exclusive OR of the two operands. Each bit of the result is 1 if the corresponding bits of the operands are different; each bit is 0 if the corresponding bits are the same. The answer replaces the first operand.
Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions Details Table /------------------------------------------------------------------------------\ |Encoding |Instruction |0|1|2|3|4|5|Description | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |34 ib |XOR AL,imm8 |X|X|X|X|X|X|Exclusive-OR immediate byte to AL | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |35 iw |XOR AX,imm16 |X|X|X|X|X|X|Exclusive-OR immediate word to AX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |35 id |XOR EAX,imm32 | | | |X|X|X|Exclusive-OR immediate dword to | | | | | | | | | |EAX | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |80 /6 ib |XOR r/m8,imm8 |X|X|X|X|X|X|Exclusive-OR immediate byte to r/m| | | | | | | | | |byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |81 /6 iw |XOR r/m16,imm16 |X|X|X|X|X|X|Exclusive-OR immediate word to r/m| | | | | | | | | |word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |81 /6 id |XOR r/m32,imm32 | | | |X|X|X|Exclusive-OR immediate dword to | | | | | | | | | |r/m dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |83 /6 ib |XOR r/m16,imm8 | | | |X|X|X|XOR sign-extended immediate byte | | | | | | | | | |to r/m word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |83 /6 ib |XOR r/m32,imm8 | | | |X|X|X|XOR sign-extended immediate byte | | | | | | | | | |with r/m dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |30 /r |XOR r/m8,r8 |X|X|X|X|X|X|Exclusive-OR byte register to r/m | | | | | | | | | |byte | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |31 /r |XOR r/m16,r16 |X|X|X|X|X|X|Exclusive-OR word register to r/m | | | | | | | | | |word | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |31 /r |XOR r/m32,r32 | | | |X|X|X|Exclusive-OR dword register to r/m| | | | | | | | | |dword | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |32 /r |XOR r8,r/m8 |X|X|X|X|X|X|Exclusive-OR r/m byte to byte | | | | | | | | | |register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |33 /r |XOR r16,r/m16 |X|X|X|X|X|X|Exclusive-OR r/m word to word | | | | | | | | | |register | |----------+--------------------+-+-+-+-+-+-+----------------------------------| |33 /r |XOR r32,r/m32 | | | |X|X|X|Exclusive-OR r/m dword to dword | | | | | | | | | |register | \------------------------------------------------------------------------------/ Description The XOR instruction computes the exclusive OR of the two operands. Each bit of the result is 1 if the corresponding bits of the operands are different; each bit is 0 if the corresponding bits are the same. The answer replaces the first operand. Operation DEST � LeftSRC XOR RightSRC CF � 0 OF � 0 Flags Affected /-----------------------\ |OF|DF|IF|SF|ZF|AF|PF|CF| |--+--+--+--+--+--+--+--| |0 | | |* |* |? |* |0 | \-----------------------/ The CF and OF flags are cleared; the SF, ZF, and PF flags are set according to the result; the AF flag is undefined. Protected Mode Exceptions #GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS (0) for an illegal address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Real Address Mode Exceptions Interrupt 13 if any part of the operand would lie outside of the effective address space from 0 to 0FFFFH. Virtual 8086 Mode Exceptions Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the current privilege level is 3. Related Information Description Flags Affected Operation Protected Mode Exceptions Real Address Mode Exceptions Virtual 8086 Mode Exceptions
Assembler Messages
This section describes all the messages produced by ALP at run time. Messages issued by the assembler have the following format:
[Coordinates] [Severity Type] [Message Number] [Message Content]
The following sections describe the various fields common to all assembler messages, and a complete description of each individual message is included .
Message Coordinates
Message coordinates (if present) appear as the first field within a message , and have one of two forms:
[Path]Filename(LLLL:CCCC):
[Path]Filename(LLLL,Macroname(LLLL,CCCC)):
Coordinates are displayed as part of a message if ALP is parsing an input stream and the event which caused the message to be diplayed is directly related to a specific location in the input. The coordinates show the user exactly where to look if action is required. The fact the ALP is parsing an input stream does not mean that coordinates will appear in a message; some messages may occur during parsing that are not a reference to the input stream.
- Filename
This is the name of the file containing the input token which caused the message to be generated. If this is the root source file whose name was passed on the assembler command line, the file name will be displayed exactly as specified by the user. If this is an INCLUDE file, it will be displayed exactly as specified in the INCLUDE directive, and the path name where the file was searched for and found (if any) will be prepended to the beginning. ALP does not query the operating system in an attempt to derive the full path name of a partially qualified file.
- Macroname
If the assembler is currently parsing tokens within a macro expansion, the name of the macro currently being expanded will appear in the coordinates.
- Line Number (LLLL)
The first number in parentheses is the line number within the source file where the referenced token is located; this refers to the outer-most point of invocation if a macro name is also given in the message coordinates. A line number value appearing within parentheses following a macro name refers to the innermost point of expansion (since macro expansions may be nested) and references the original definition of the macro.
- Column Number (CCCC)
The second number in parentheses is the column number of the first character of the referenced token within the source file or macro definition.
Message Severity Types
Every message displayed by ALP is assigned a specific type, and the type of message dictates the severity level. The following is a list of message types produced by ALP showing the type name (as it appears in the actual message), followed by a description of what caused the message, how severe it is, and the action taken by ALP after the message is generated.
Info Informational message only; processing continues normally.
Warning: Questionable syntax or semantics; input file may be incorrect, but processing continues.
Error: Syntax or semantic error in input; continue processing, object output file is discarded.
Fatal: Unrecoverable user or environment error; terminate assembly prematurely after releasing resources and closing files.
Internal: Internal program logic error, abort immediately.
Usage: Incorrect command line syntax, abort.
When the assembler begins processing, the display of all warning messages is enabled; informational messages do not display unless they are requested . The display of both warning and informational messages may be controlled with the command line option M - Control Individual Messages or Groups See Message Control Options for more information on the behavior of assembler messages.
Message Numbers and Message Content
Messages numbers displayed by ALP have the following format:
ALPnnnn:
Message numbers always have a three-letter prefix that designates the component issuing the message (ALP), followed by a four digit decimal number given by nnnn. All messages issued by the assembler are uniquely numbered; however, not all messages displayed by the assembler will be accompanied by a formatted message number (for instance, the assembler banner).
Messages issued during assembler initialization, command line processing, or exception handling are numbered from 0 to 999. Other messages occur during input stream processing and are grouped according to their severity type: 1000 through 1999 for fatal errors, 3000 through 3999 for regular errors, 4000 through 4999 for warnings, and 5000 through 5999 for informational messages.
It should be noted that messages are numbered for reference only; it is not guaranteed that messages will be numbered identically for each subsequent assembler release, or that individual messages will be retained or remain unmodified in future releases.
Message Numbers 0-999: Internal, Usage, and Special Case Messages
Messages in this section normally occur during assembler initialization, when errors are encountered during command line processing, or when exceptional conditions occur that prevent the assembler from completing initialization or execution.
ALP0004: received, is shutting down
ALP has handled a request from the operating system to abort execution. The type of abort request is noted in the text of the message. All open files will be closed and any incomplete output files will be deleted. Recovery: If termination was requested by the user, no further action is necessary. Otherwise, the operating system may have sent an abort signal because of insufficient system resources.
ALP0005: Assertion failure,
This message is displayed when an internal self-check condition has been violated, and indicates an error in the internal programming logic of the assembler. This message should never occur. Recovery: Note the conditions under which the error occurred, and if possible isolate a minimal test case that will reproduce the problem. Contact IBM.
ALP0942: -Lo:xxxxxxxxxxxx must be one each of "XYZLMICFOGDS"
This option specifies the sort order for the individual vertical listing file columns. Not all single character tags that uniquely identify each individual column were specified. Recovery: All column tags must be specified in the argument field of this option, even when the display of one or more columns has been disabled.
ALP0981: Invalid or missing include path
The list of INCLUDE file directories was incorrectly specified.
ALP0991: Invalid option ""
The command line parser encountered a character sequence on the command line that was interpreted as an option, but the option identifier itself was not recognized.
ALP0992: Option "" not valid in global scope
An attempt was made to use an option in a situation that would cause ambiguities. As coded by the user, the option is only legal when applied to an individual filename. Recovery: If the option syntax is correct, insure that it follows the filename to which it applies.
ALP0993: Option "" not valid in local scope
An attempt was made to apply a global assembler option to an individual file. Recovery: Global options must appear before any filenames; in most cases the usage of global options and filenames is a mutually exclusive operation .
ALP0994: Invalid argument in option ""
In the argument field of a parameterized command line option, an argument of a specific type was expected, but an invalid token was encountered instead.
ALP0995: Expecting ":" or "=" in option ""
A parameterized option was encountered, but no colon (:) or equal sign (=) followed the option identifier. Recovery: Parameterized options must be immediately followed by a colon or equal sign with no intervening white space characters, followed by the option argument(s).
ALP0996: Invalid message number
An explicit message number specified with the -M option did not identify a message for which switching is enabled. Recovery: Only warning and informational messages may switched on or off.
ALP0997: Invalid keyword "" in option ""
The referenced identifier was not a valid keyword; a keyword was expected in the context of the referenced option.
Message Numbers 1000-1999: Fatal Error Messages
Fatal errors typically occur when the assembler requests a resource from the operating system, but the request fails. This may or may not be due to user error, but the assembler was unable to correct the problem and execution is terminated after an orderly shutdown is performed.
ALP1101: Memory allocation error
The assembler attempted to dynamically allocate a block of storage, but the request was denied.
Recovery:
- Close any large or memory intensive processes
- Verify that sufficient paging space exists
- The host computer may have insufficient hardware resources
ALP1102: Too many error messages
This message is displayed when the assembler has reached the error limit threshold. Related Information:
- Me - Set Number of Errors Before Assembler Aborts
ALP1103: Error opening message output file "";
An error occurred while attempting to open the referenced file. Recovery: Verify that the file exists and that read permission is allowed. Verify that no other processes are accessing the file, and that the file system is functioning correctly.
ALP1104: Input and message output filenames are identical
The assembler has detected an attempt to create an output file with a name identical to that of an input file; the operation was not allowed.
The assembler only detects this condition when the names are an identical match , using a case-sensitive comparison algorithm.
Recovery: Ensure that the correct command line options have been used. Internal variables may have been incorrectly initialized using options that affect automatic file name generation, thus causing a filename collision.
Related Information:
- Internal Variables
- File Control Options
ALP1401: Error opening listing output file "";
An error occurred while attempting to open the referenced file. Recovery: Verify that the file exists and that read permission is allowed. Verify that no other processes are accessing the file, and that the file system is functioning correctly.
ALP1402: Error writing listing output file "";
An error occurred while attempting to write to the referenced file. Recovery: Ensure that there is sufficient space on the target file system, and no other processes are accessing or modifying the file. Verify that the file system is functioning correctly.
ALP1403: Input and listing output filenames are identical
The assembler has detected an attempt to create an output file with a name identical to that of an input file; the operation was not allowed. The assembler only detects this condition when the names are an identical match , using a case-sensitive comparison algorithm. Recovery: Ensure that the correct command line options have been used. Internal variables may have been incorrectly initialized using options that affect automatic file name generation, thus causing a filename collision. Related Information: �Internal Variables �File Control Options
ALP1601: Error creating object output file "";
An error occurred while attempting to create the referenced file. Recovery: Verify that the target drive and directory exist and that create and write permission have been granted. Verify that no other processes are accessing the file, and that the file system is functioning correctly.
ALP1602: Error writing object output file "";
An error occurred while attempting to write to the referenced file. Recovery: Ensure that there is sufficient space on the target file system, and no other processes are accessing or modifying the file. Verify that the file system is functioning correctly.
ALP1603: Input and object output filenames are identical
The assembler has detected an attempt to create an output file with a name identical to that of an input file; the operation was not allowed. The assembler only detects this condition when the names are an identical match , using a case-sensitive comparison algorithm. Recovery: Ensure that the correct command line options have been used. Internal variables may have been incorrectly initialized using options that affect automatic file name generation, thus causing a filename collision. Related Information: �Internal Variables �File Control Options
ALP1801: Error opening source file "";
An error occurred while attempting to open the referenced file. Recovery: Verify that the file exists and that read permission is allowed. Verify that no other processes are accessing the file, and that the file system is functioning correctly.
ALP1802: Error reading source file "";
An error occurred while attempting to read from the referenced file. Recovery: Ensure that the file exists, that the filelength is non-zero, and that read permission is allowed. Verify that no other processes are accessing the file, and that the file system is functioning correctly.
ALP1803: Circular text substitution
The preprocessor has detected an attempt to perform a recursive text substitution operation, such as an INCLUDE file "including" itself, or a macro expanding itself.
ALP1804: Internal buffer overflow
The preprocessor has overflowed an internal memory buffer while trying to process the referenced token. Recovery: Reduce the number of whitespace characters preceding the token or the number of characters in the token itself.
ALP1901: Unexpected character in identifier
The command line parser was expecting an identifier but immediately encountered a non-identifier character. Command line parsing was prematurely terminated.
ALP1902: Unexpected character in keyword
The command line parser was expecting an keyword but immediately encountered a non-identifier character. Command line parsing was prematurely terminated.
ALP1903: Error opening response file "";
An error occurred while attempting to open the referenced file. Recovery: Verify that the file exists and that read permission is allowed. Verify that no other processes are accessing the file, and that the file system is functioning correctly.
ALP1904: Invalid filename in "@" directive
The command line parser was processing an @Filename (command line response file) directive, but the token following the "@" character did not constitute a valid filename. Recovery: Ensure that only valid filename characters are used.
ALP1905: Unexpected character or terminator
The command line parser encountered either an illegal control character or the end of the command line input stream before the current command parameter was completely parsed.
ALP1906: Numeric constant is invalid;
An error occurred while converting the referenced numeric constant to an internal representation.
Message Numbers 3000-3999: Error Messages
Error messages are typically issued during processing of the input stream and indicate a syntax or semantic error in the user program. The assembler will continue processing after an error has occurred, but since the input stream was incorrect an output object file will not be created.
ALP3201: Can't
This message appears during expression processing when a binary operation was performed on two primary expressions of incompatible type. The message replacement parameters indicate the attempted operation.
ALP3202: Overflow or division by zero
Either the expression evaluated to a quantity that is not representable in the current expression word size, or an expression contained a binary division (/) or modulus (MOD) operation where the denominator expression was evaluated to be zero.
ALP3203: Can't take offset of expression
The expression to which the OFFSET operator was applied did not contain a constant or relocatable address. Recovery: The offset operator may not be applied to register values. If the offset expression is applied to a quoted string, ensure that the string length does not exceed the length of what is representable as a constant value, given the word size of the enclosing segment (2 for USE16 segments, 4 for USE32 segments).
ALP3204: Expecting relocatable expression
An expression was used in a context that required a segment or group relative address, but one was not supplied.
ALP3205: Expecting primary expression
The assembler was expecting a terminal operand (an identifier, register, or constant) or an expression enclosed in parentheses () or square brackets [ ]; instead, an unexpected token was encountered at the referenced location.
ALP3206: Expecting "]"
An opening bracket "[" was encountered and the subsequent expression was fully parsed, but a closing bracket "]" was not encountered.
ALP3207: Expecting ")"
An opening parenthesis "(" was encountered and the subsequent expression was fully parsed, but a closing parenthesis ")" was not encountered.
ALP3208: Forward reference needs segment override or FAR PTR
An expression contained a forward reference to a location that was later determined to be of FAR distance. When forward references are used, the assembler makes default assumptions about the eventual definition of undefined labels used in the expression; such definitions are never assumed to be in a different segment. Use of such an expression can cause differences between the code generated on the first and second passes of the assembler. Recovery: Qualify the expression with a distance override (FAR, FAR16, or FAR32) or segment override (:) operator.
ALP3210: Illegal operation on relocatable value
A unary operator was applied to an expression containing a relocatable address or indirect memory expression, but the operator may only be used with constant values.
ALP3211: Illegal type expression
A "<type> PTR" type conversion expression was encountered, but the expression given by <type> was not a valid qualified type.
ALP3212: Operands must be relative to same segment or group
A binary operation was performed on two relocatable expressions, but the expressions were not declared relative to the same segment.
ALP3213: Illegal digit(s) for current .RADIX
A literal integer constant was not qualified with a prefix or suffix (radix override), but was specified using digits that are not valid for the current radix. For instance, use of the literal 1234 is illegal when the current radix value is 2.
ALP3214: Value cannot be negative
A negative-value expression was encountered where only positive numbers are allowed, such as the count-value for the DUP operator, the field-width entry in a RECORD definition, or the shift-value in the SHL or SHR operators.
ALP3215: Expression cannot be forward-referenced
The referenced expression is used in a context where an undefined or forward-referenced value prevents the assembler from completing the operation or generating a reliable construct. This is the case during the declaration of user-defined types or where the value of the location counter will depend on the results of the expression.
ALP3216: Expression does not have an operand size
The SIZE operator was used on an expression for which no operand size exists (a simple number value, for example). The SIZE operator may only be used on expressions that have an operand size attribute, such as a variable name or type name expression.
ALP3217: Record tag expected
A left-hand identifier operand was followed by a right-hand expression list operand enclosed in angle brackets or braces. The construct was parsed as a record constant, but could not be evaluated because the left-hand operand was not a record tag name previously defined with the RECORD directive.
ALP3218: Numeric constant is invalid;
An error occurred while converting the referenced numeric constant to an internal representation.
ALP3219: Expression must be a constant value
The assembler issues this message whenever a constant expression is required, but the expression supplied contained relocation information or machine register references.
ALP3220: Undefined symbol ""
This message appears when an identifier was referenced in an expression or type declaration, and the identifier has no external declaration or definition or is forward-referenced.
ALP3221: Expecting "," or ")"
This message appears when processing a DUP expression list and an unexpected token was encountered. The parser was expecting the list to be continued with a comma or terminated with a closing parentheses. Recovery: Check for possible unbalanced parentheses ().
ALP3222: Expecting "("
The DUP operator was encountered but was not followed by an opening parentheses to begin the duplicated expression list. Recovery: The duplicated expression list following the DUP operator must be enclosed in parentheses (), even if the expression list only contains a single item. ALP3223: Expecting variable name The LENGTH operator may only be applied to data labels (variable names). LENGTH returns the number of items allocated to the data label when the label was defined in a data allocation statement. ALP3224: Expecting "," or "" This message appears within a bracketed expression list where the assembler was expecting a comma to introduce the next initializer expression, or a closing brace or angle bracket to terminate the initializer expression list . ALP3225: Register-indirect expression illegal in this context A constant or relocatable address expression was expected but the expression also contained at least one machine register. Such an address may be calculated only at run time, and is illegal in this context. ALP3226: Expression must have structure or union type The expression to the left of a structure member selection operator (.) did not have a structure or union type. The assembler cannot evaluate the member expression to the right of the selection operator unless the left hand operand has an associated structure or union type. Recovery: If the left hand operand must be something other than an explicit structure or union variable (such as a register-indirect expression like [EBX]), then use the PTR operator to convert the left hand operand to the appropriate type. ALP3227: Right operand is not a member of structure or union The expression to the right of a structure member selection operator (.) was not a member of the left-hand structure or union expression. Recovery: The right-hand operand must be an identifier named in the type definition for the structure or union. ALP3228: Invalid identifier type for this operation The symbol type of the referenced identifier was not valid in this context. Recovery: This could happen if a text macro name was used in a context where macro expansions are not performed. ALP3229: Expression type not valid in this context The referenced expression evaluated to a type that is not valid for the context in which it was used. An example of this would be the use of a segment name or group name where a data label was expected. Recovery: Review the expression-types allowed by the statement or clause where the referenced expression was used, and modify the construct accordingly. ALP3301: Label must be followed by a directive A user identifier appeared in the label field, but the end of line was encountered before an assembler directive was specified to give the label a definition. Recovery: Code labels must be followed by a single colon (:) or double colon (::) on the same line as the label itself. Named assembler directives must appear on the same line as the associated label, or the line continuation (\) character must follow the label to create a single logical line. Check for a possible misspelled identifier or keyword. Verify that the identifier was specified using the correct uppercase and lowercase letters if case sensitive assembly is in effect. ALP3302: Expecting label, directive, or mnemonic The token referenced in the error message was unexpected. This error occurs when the first token on the line is not a valid label, directive, or mnemonic, or when a valid label has been encountered but was not followed by a valid directive or mnemonic. Recovery: If this message references an identifier, check that it was spelled correctly, or that the identifier was specified using the correct uppercase and lowercase letters if case sensitive assembly is in effect. ALP3303: Can't be preceded by data label The referenced token is either an instruction mnemonic or a user identifier that appears after a label. If the referenced token is an instruction mnemonic, then the preceding label must be followed by a single colon (:) or double colon (::). Data labels may not be used to refer to instructions. Otherwise, it is invalid to have two labels appearing in succession. Recovery: Check for misspellings in either identifier, and that the identifiers were specified using the correct uppercase and lowercase letters if case sensitive assembly is in effect. ALP3501: Address size mismatch This message indicates one of the following: �An indirect memory expression contained a mixture of 16-bit or 32-bit base or index registers. This prevents the assembler from determining the address size of the expresson, and is illegal. �The instruction performs an unalterable implicit operation which conflicts with the operands supplied. ALP3502: Invalid register expression A processor register was specified using indexed notation (i.e., "REG(X)"), but the expression in parentheses was out of range and did not refer to a valid register. ALP3503: Can't use this register with scale factor In an indirect memory expression, the scaling operator (*) was applied to a register for which the processor does not support a scaling operation. A scaling factor may only be used on 80386 or later processors, and only in 32-bit address expressions. Within this context, only the EAX, EBX, ECX, EDX, EDI, ESI, and EBP registers are valid. A scaling factor may not be applied to the ESP register. ALP3504: Illegal target of self relative pointer The SHORT operator was used, but the expression to which it was applied was not a simple self relative displacement. This can occur if the expression is a constant, data label, or indirect memory operand. ALP3505: Invalid mnemonic/operand combination This message appears when a valid mnemonic has been recognized and all operand expressions have been correctly parsed, but the assembler was unable to combine the results into a form that it could associate with a valid instruction encoding. Recovery: This usually indicates that one or more operand expressions were not correctly specified. Verify such factors as: �Correctly specified operand sizes �Register combinations allowable for this instruction �Labels or identifiers are of the correct type �Correct number of operands ALP3506: Register combination invalid with -bit expression For 80386 processors or greater, both 16-bit and 32-bit effective addresses are supported, but the two modes differ in the register combinations that are allowed for indirect addressing. The expression used a combination that was invalid for the referenced address size. For expressions that refer to 16-bit (USE16) memory locations, only a single base register (BX or BP) and/or a single index register (DI or SI) may be used. For expressions that refer to 32-bit (USE32) memory locations, only a single base register (EAX, EBX, ECX, EDX, ESP, EBP, EDI, ESI) and/or a single index register (EAX, EBX, ECX, EDX, EBP, EDI, ESI) may be used; no single register may appear more than once in a given expression. ALP3507: Scaling factor must be 1, 2, 4, or 8 The processor only supports the scaling factors referenced in the message. ALP3508: Invalid use of register One of the following illegal conditions occurred: �An attempt was made to use an unsupported register in an indirect memory expression (for example, [AH]). �An attempt was made to combine a register with other terms to form an indirect memory expression, and the register was not enclosed in square brackets [ ]. �A register argument was expected and correctly parsed in an assembler directive, but the referenced register cannot be legally used in this particular context. ALP3509: Multiple base registers An indirect memory expression contained a combination of registers that was invalid for the selected addressing mode. More than one register was evaluated as a base register by the assembler; the processor only supports a single base register within register indirect addressing mode. For expressions that refer to 16-bit (USE16) memory locations, only BX and BP are valid base registers. For expressions that refer to 32-bit (USE32) memory locations, only EAX, EBX, ECX, EDX, ESP, EBP, EDI, and ESI are valid base registers. ALP3510: Multiple index registers An indirect memory expression contained a combination of registers that was invalid for the selected addressing mode. More than one register was evaluated as an index register by the assembler; the processor only supports a single index register within register indirect addressing mode. For expressions that refer to 16-bit (USE16) memory locations, only DI and SI are valid index registers. For expressions that refer to 32-bit (USE32) memory locations, only EAX, EBX, ECX, EDX, EBP, EDI, and ESI are valid index registers. ALP3511: Multiple scaling factors In an indirect memory expression, the scaling operator (*) was applied to more than one register term. The processor does not support more that one scaling factor within a single effective address. ALP3512: Near target cannot be in different code segment A JMP or CALL instruction specified a near target that was defined in a different segment, but the segments containing the instruction and the target were not named together in a GROUP directive. An instruction and its near target cannot be in different segments (addressed by the CS register) at run time. Recovery: If the instruction was otherwise properly coded, use the GROUP directive to collect the segments together so that they will be accessible at run time with the same CS register value. ALP3513: Need size for operand The instruction operand list did not specify a size for the operation, and the assembler is unable to select a default instruction encoding because multiple variations exist. Recovery: As size may be assigned to one or more of the operands by using the <type> PTR override operator. ALP3514: Cannot establish near target without ASSUME CS: When running the under MASM 5.10 emulation, the assembler requires the code segment register (CS) to have an ASSUME setting for the currently opened segment before it will allow the creation of explicit near code labels. Recovery: Insert an "ASSUME CS:SegName" statement at the beginning of the segment before the appearance of any near code labels. ALP3515: Code generation outside of segment boundaries A processor instruction was encountered, but no program segment has been opened. Recovery: Place all processor instructions within a named program segment. ALP3516: Target is out of range by bytes(s) The instruction references a code label or address using a self-relative displacement (a signed value relative to the address of the next instruction), but the target address requires a displacement value that is too large to be encoded into the instruction. Recovery: If the SHORT operator was used in the operand field, remove it. If the instruction is of the "conditional jump" variety, it may be necessary to transform it into a "jump around a jump" by inverting the condition under which the jump is performed, then changing the target so that it references an address immediately following a "direct jump" instruction, which must be inserted and coded so that it references the original target location. ALP3517: Selected processor does not support this operand An attempt was made to use an operand (such as a machine register) that does not exist on the processor for which code is being generated. Recovery: Either use a processor selection directive to select the correct target processor, or modify the referenced operand to one that is supported on the target machine. ALP3518: Can't access data, no ASSUME or segment override One of the following conditions occurred: �An attempt was made to reference a named memory location that exists in a segment for which no ASSUME statement is in effect �An attempt was made to combine two terms in a binary expression that are relative to different segments. ALP3519: Too many operands This message appears during processing of an instruction operand list. More operand expressions were encountered than is valid for the instruction set of the target architecture. Recovery: Remove the offending token(s) beginning at the referenced location. ALP3520: Segment address size not supported on this processor A 16-bit processor selection directive was encountered within a 32-bit segment, or an attempt was made to reopen a 32-bit segment after switching to a 16-bit processor type. The selected processor cannot support 32-bit segments. ALP3521: Register expected While processing an assembler directive an unexpected token was encountered at the referenced location. A processor register was expected instead. ALP3522: Selected processor does not support this instruction A mnemonic or mnemonic/operand combination has been used that is not supported by the processor for which the assembler is currently generating object code. Recovery: Verify that the correct target processor has been selected with one of the processor selection directives, or that the correct instruction form has been coded. Since ALP does not perform some of the same implicit conversions that MASM 5.10 does, use of the <type> PTR conversion operator may be required to avoid certain type-mismatch problems. ALP3523: Cannot change expression word size After the expression word size was explicitly set with an OPTION EXPRxx directive, an attempt was made to alter the setting with another OPTION directive, or by switching to a 32-bit processor after an explicit OPTION EXPR16 was issued. Once set, the expression word size cannot be altered. ALP3601: Filename expected The INCLUDELIB directive was used, but an error occurred while attempting to parse the filename parameter. Recovery: Verify that only legal filename characters are used. If the filename appears as a quoted string literal, verify that the literal uses legal syntax according to the rules for quoted strings. ALP3602: Floating-point initializer illegal with integer variable A floating point initializer was used on a variable that was not of type DD , DQ, DT, REAL4, REAL8, or REAL10. ALP3603: Integer initializer illegal with floating-point variable An integer initializer was used on a variable that was of type REAL4, REAL8 , or REAL10. Only floating-point initializers can be used with variables having these types. ALP3604: Expression has no effect During a data allocation directive, an attempt was made to initialize an item using an expression that was not correctly evaluated. Recovery: This may indicate an error in the internal assembler logic. Note the conditions of the error, and contact IBM. ALP3605: String is empty During a data allocation directive, an attempt was made to initialize an item using a quoted string expression that contained no data. Recovery: Quoted strings must contain at least one character value, otherwise the expression is illegal. ALP3606: Symbol "" was never defined An identifier was declared with a GROUP or PUBLIC directive, but was never given a full definition. This condition prevents the assembler from writing the appropriate records to the output object file. Recovery: Segments declared in a GROUP directive must defined in a SEGMENT directive. Identifiers declared with the PUBLIC directive must be defined as a code label, data label, or absolute symbolic constant. ALP3607: Value not addressable The expression following the END directive did not evaluate to segment relative address. The expression must refer to a memory location to which the operating system loader can pass control when the the program is executed. Recovery: Ensure that the expression contains no machine registers, and that it references a value relative to a segment defined within the module. ALP3608: Segment size exceeds 64K limit The amount of data emitted into the current (16-bit) segment has exceeded 65536. No object file can be produced under this condition, and the current location counter has been wrapped back to zero. Recovery: Reduce the amount of code or data contained in this segment, or move some of the information to another segment. ALP3701: Argument expected While processing a directive that accepts a list of comma separated arguments, at least one argument followed by a comma was parsed, but no additional argument was encountered before the end of the line. ALP3702: Can't override array with single item Within a structure variable instantiation, an incorrect attempt was made to override the default initializer of a structure member. The structure member was defined to be of type array (having been initialized with a character string or list of expressions enclosed in brackets), and the overriding expression in the structure instantiation was a single numeric expression. Recovery: Array members can only be overridden using a quoted character string or a bracketed list of numeric expressions. ALP3703: .RADIX value must be one of: 2, 8, 10, or 16 Self-explanatory. ALP3704: Can't nest initializers This message appears when a structure instantiation contained a nested override initializer within brackets, and OPTION OLDSTRUCTS was in effect. Nested structures are not allowed when the assembler is operating in this mode. ALP3705: Colon expected Self-explanatory. ALP3706: Expecting "<" or "{" When a structure or record variable is allocated, the assembler expects one or more initializer expressions to follow the structure or record type name . Initializer expressions must be enclosed in angle brackets or braces, but an unexpected token was encountered at the referenced location. ALP3707: Initializer too long or incorrect type Within the initializer list of a structure instantiation, one of the following conditions occurred: �An attempt was made to initialize a structure member with a character string override that exceeded the length of the member definition. �The initializer expression type did not match that of the structure member item being initialized. ALP3708: Invalid ALIGN setting A zero or incorrect value was specified as the argument to the ALIGN directive. ALP3709: Previous definition prevents external attribute An attempt was made to declare an identifier as being external to this module, but a previous conflicting definition already exists. The operation is disallowed. ALP3710: Syntax error; unexpected token The referenced token is not valid for the construct being parsed. The assembler could not attempt further processing or diagnosis of the construct. ALP3711: Previous definition prevents change in global visibility One of the following conditions has occurred: �The PUBLIC directive or keyword was used to export an identifier, but the identifier has already been declared with attributes that prevent it from being exported. �A PUBLIC directive was used on a procedure name, but the PRIVATE keyword was used in the PROC directive that defined the procedure. Recovery: Verify that the identifier does not appear in a COMM or EXTERN declaration, and that the identifier is a valid code or data label. Insure that the PUBLIC declaration appears before the identifier it references, and that the declaration is processed by the assembler on the first pass. ALP3712: "" must be a segment name This message appears during processing of the GROUP directive when one of the arguments was not a valid segment name. Recovery: Only identifiers defined using the SEGMENT directive are valid arguments to the GROUP directive. If the message is referencing an identifier, verify that it is indeed the name of a valid segment. Verify that the identifier was specified using the correct uppercase and lowercase letters if case sensitive assembly is in effect. ALP3713: Label outside of segment boundaries This message appears when a label definition appears outside of any enclosing segment. The label is an assembler alias for a segment relative machine address; such an address cannot be assigned to the label unless it appears inside of a program segment. This condition is an error, and must be corrected. Recovery: Place the definition within a valid segment. ALP3714: Directive must be named This message appears when a directive was encountered but was not preceded by a label. A label is required for this directive. Recovery: Precede the directive with a valid identifier. ALP3715: Must specify all columns in .LIST ORDER The .LIST ORDER directive did not specify a position for every possible column. All column names must appear in the list. ALP3716: Listing control stack is empty This message appears when the user issues a .LIST POP directive and there are no listing environment entries on the stack. Recovery: A matching .LIST PUSH directive must be issued before .LIST POP may be used. ALP3717: Processor mnemonic used as a label This message is issued when a processor instruction mnemonic is used as an identifier. The severity of this message may be relaxed from Error to Warning in certain circumstances by using the +Sk command line switch. Related Information: �Sk - Control Use of Reserved Words as Labels ALP3718: Misplaced ENDP; no open PROC This error occurs when the ENDP (end procedure) directive was encountered, but there is no procedure currently open. Recovery: The PROC directive must be used to open a procedure before the ENDP directive can be used. ALP3719: No closing bracket An opening bracket "[" was encountered within a directive or expression, but a matching close bracket "]" was never supplied, or was misplaced. ALP3720: Data allocation outside of segment boundaries A data definition directive was encountered, but no program segment has been opened. Recovery: Place all data allocation directives within a named program segment. ALP3721: Operation illegal within structure or union An attempt was made to use a directive or construct that is illegal within the context of a structure definition. Recovery: Processor instructions are not allowed in structure definitions, and only a subset of assembler directives are legal in this context. ALP3722: Expression is not a segment or group One of the following illegal conditions occurred: �A segment override expression (using the colon (:) operator) did not contain a valid segment register, segment name or group name expression on the left side of the colon operator. �An ASSUME directive contained an expression that did not evaluate to a valid segment or group name. The argument to the ASSUME directive specified a machine segment register, which may only be associated with a segment or group name. Recovery: Verify the correct spelling of either the register argument or the segment name or group name expression. ALP3723: ON or OFF expected A listing control directive was encountered where the value of a flag is being manipulated; the ON or OFF keywords are the only values acceptable in this context. ALP3724: ON, OFF, or BLANK expected A listing control directive was encountered where the display or non- display of an individual column is being determined; the ON, OFF, or BLANK keywords are the only values acceptable in this context. ALP3725: Phase error between passes The address assigned to a label on pass one of the assembler had a different value on the second pass. This usually indicates that a forward reference to a label was not fully qualified, and the eventual definition of the label was different than what was assumed by the assembler on the first pass. On the second pass, the assembler did not need to make any assumptions about the attributes of the symbol, but the resulting generation of object code caused a discrepancy in the value of the location counter. Recovery: Use the listing control command line options to request a listing for both pass one and pass two of the assembler; use this listing to compare location counter values prior to the point where the phase error occurred. This will reveal the instruction that caused the location counter to become unsynchronized. Related Information: �Lp - Generate Listing on Specific Pass ALP3726: Symbol already defined as different type An identifier has been redeclared to have attributes that conflict with a previous declaration or definition. Recovery: If this is an external declaration (using an EXTRN or COMM directive) referencing a data variable, ensure that the type specifier has been correctly respecified. Verify that the variable has not already been defined within this module. External declarations for data labels or near code labels appearing within segment boundaries must not reappear within the boundaries of a different segment. Labels appearing outside of segment boundaries inherit the default address size (USE16 or USE32), and must not reappear within a segment having a conflicting address size. Far code labels may not be redeclared with conflicting address sizes. ALP3727: PROC name mismatch The ENDP directive was used to close the current procedure, but the name used in the ENDP directive did not match the name specified in the matching PROC directive. ALP3728: Symbol redeclared relative to different segment A data label or near code label appearing in an external declaration was redeclared in a different segment (or outside of segment boundaries) and conflicts with a previous declaration or definition. Recovery: Data labels or near code labels appearing within segment boundaries must not reappear within the boundaries of a different segment. Labels appearing outside of segment boundaries inherit the default address size (USE16 or USE32), and must not reappear within a segment having a conflicting address size. ALP3729: Attribute mismatch during reopen of segment An existing segment was reopened using different or conflicting attributes. Recovery: All identically named SEGMENT directives must be declared with the same attribute list. If an address size attribute (USE16 or USE32) was not explicitly specified in the SEGMENT directive, verify that the default segment word size was not altered between segment declarations with a processor selection directive. ALP3730: No segment, structure, or union opened as "" The ENDS directive was used, but no segment, structure, or union was open ( or did not match the referenced name) and thus could not be terminated. Recovery: If a name was given in the message, verify that it matches the name used in the associated SEGMENT, STRUC, or UNION directive. Verify that nested occurrences of SEGMENT, STRUC, or UNION are paired with a matching ENDS directive. ALP3731: Identifier expected A directive or expression operator was used such that an identifier was expected, but none was supplied. Recovery: Check for a possible misspelled identifier; Verify that the identifier was specified using the correct uppercase and lowercase letters if case sensitive assembly is in effect. Verify that the identifier is not a reserved keyword. ALP3732: Reserved symbol "" cannot be created or modified An invalid operation was performed on a reserved identifier. One of the following conditions occured: �An attempt was made through an EQU (or =) directive to alter the value of a predefined identifier. Unless documented otherwise, this is an illegal operation. �The assembler attempted the deferred creation of a reserved symbol, but a user-defined identifier already exists with the same name and has conflicting attributes. ALP3733: Symbol redefinition error An attempt was made to redefine an identifier in a context where redefinitions are not allowed. Redefinitions are allowed only for text macros and assembler variables assigned using the equal (=) directive. ALP3734: Too many initializers A bracketed expression list within a structure instantiation or record constant contained too many comma-separated expressions. The number of initializer expressions exceeded the number of elements in the structure or record definition. ALP3735: Qualified type or type keyword expected This message appears when a type expression or a COMM, EXTRN, or LABEL directive was expecting a type keyword, but none was supplied. ALP3736: Unexpected text in statement An assembler directive was fully parsed and recognized, but invalid information was encountered at the referenced location. ALP3737: This assembler issues this message to display user defined text when the ECHO or %OUT directives are encountered. ALP3738: Symbol redefinition has different value An attempt was made to redefine an EQU symbol to value which differs from a previous definition. EQU symbols may have multiple definitions only if they have identical constant values. ALP3739: Directive illegal outside of segment boundaries The referenced directive performs a segment-relative operation and may only be used inside of segment boundaries. ALP3740: Alignment value must be a power of 2 The expression argument given in the ALIGN directive did not evaluate to a power of 2 (2, 4, 8, etc.). ALP3741: Alignment value not valid with current segment alignment The referenced alignment factor was less than the alignment factor specified in the SEGMENT declaration containing the ALIGN or EVEN statement . This condition is illegal because the assembler cannot guarantee that the linker will not invalidate the requested alignment when it exercises its right to position the entire segment according to the alignment factor given in the enclosing SEGMENT declaration. Recovery: Respecify either the aligment factor or the SEGMENT delaration so that the segment alignment is greater than or equal to any alignment factor requested therein. ALP3742: Redefinition has different number of fields A RECORD type redefinition did not contain the same number of fields as a previous definition. ALP3743: Redefinition has different value A redefinition construct was encountered (such as a type definition directive) where the redefined value did not match that of a previous definition. Redefinitions are allowed for this particular construct, but they must restate the same value given in the original definition. ALP3744: Too many bits in record definition The referenced record definition exceeded the maximum allowable value of 32 bits. ALP3745: Record tag or fieldname expected The operand of the MASK or WIDTH operators must be an identifier defined with the RECORD directive. This identifier must be either the tag name of the record itself, or one of the field name entries defined within the body of the RECORD directive. ALP3746: Value is out of range The value of the referenced expression is not representable, requires too many significant bits to be stored, or lies outside the range of legal values for this context. ALP3747: Mismatch of segment address sizes in group A group was declared to contain segments of differing address sizes. A group may contain either USE16 or USE32 segments, but not a combination of both. ALP3748: Segment already a member of group "" An attempt was made to assign a segment to more than one parent group. ALP3749: Directive requires use of .MODEL A simplified segmentation operation was encountered but a .MODEL directive was never processed. ALP3750: PROC must immediately precede LOCAL A LOCAL assembler directive was encountered, and one of the following occurred: �The LOCAL directive was not enclosed within a PROC/ENDP procedure block. �The LOCAL directive was positioned within a procedure block, but other assembler directives or instructions were encountered between the PROC directive and the LOCAL directive. ALP3751: Operand has incorrect size The size given for an operand was incorrect, or did not match that of a destination or target operand where it is to be used. ALP3752: Mismatch in attribute The value of an attribute specified in a redeclaration or redefinition did not match the value given in the original declaration or definition. The body of the message indicates the type of attribute that is mismatched, and the assembler follows this message with two 5704 informational messages showing the coordinates and values of the mismatched constructs. ALP3753: Name collision caused by promotion from inner scope During a definition of a structure (or union) type, a field identifier defined at the outer (current) scope had the same name as a field defined in a promoted inner scope (one created through the use of an unnamed imbedded structure). When a structure type is used to create an unnamed field within another structure type, all of the field names from the inner structure are "promoted", or made visible to the outer defining scope. Recovery: One of the field identifier names must be altered to avoid the name collision. Alternatively, the unnamed imbedded structure may be given an explicit field name, in which case its own fields are no longer promoted , and fully-qualified references must be used to reach them from within expressions. ALP3754: Cannot determine calling convention A procedure was defined to accept arguments passed on the stack by a calling routine, but no language attribute was specified or assumed for the procedure. The language attribute determines the calling convention, which in turn defines the order that arguments are pushed onto the stack. Recovery: Use one of the following constructs: �Specify an explicit language keyword in the body of the PROC directive. �Specify a .MODEL directive with a language keyword argument. �Specify an OPTION LANGUAGE directive. ALP3801: Argument expected When processing one of the EQU, IRP, IRPC, FOR, or FORC macro directives, the required argument immediately following the directive was missing or incorrectly specified. Recovery: Modify the referenced token so that it is a valid argument for the directive. If this directive appears within a nested macro expansion, check to see that correct arguments were passed to outer level macros, or that outer level macro definitions are correct. ALP3802: EXITM outside of macro The EXITM keyword was encountered outside the context of a macro body. Recovery: Verify that unexpected conditional assembly results are not affecting the block structure of the program. The EXITM keyword may not be used outside the scope of a macro body. ALP3803: Comma expected Self-explanatory. This message is displayed for any preprocessor directive that requires a comma where one was not supplied. ALP3804: Extra data on line This message appears any time the preprocessor has parsed a correctly formed preprocessor directive, but additional token(s) (other than comments were encountered before the end of line was reached. Recovery: Remove the offending token(s) beginning at the referenced location. ALP3805: Filename expected This message appears when an INCLUDE preprocessor directive did not contain a properly formed filename. The INCLUDE directive is ignored. ALP3806: This is the message printed as part of a conditional error directive; if one of these directives is processed and the user has included text information to be printed, it will appear in the <text> field of the message. If no user text was specified, this parameter will be empty and the message will contain no additional text. Recovery: This was a forced error. ALP3807: Identifier expected This message appears when a conditional preprocessor directive was expecting an identifier and one was not supplied. ALP3808: Reserved macro "" cannot be redefined The assembler defines the referenced identifier for its own purposes; it may not be redefined by the user. ALP3809: Missing ENDM The preprocessor was reading the body of a macro definition when the end of the current input stream was reached; the macro definition was never closed with an ENDM keyword. Recovery: Verify that unexpected conditional assembly results are not affecting the block structure of the program. A macro definition may not be closed in an input stream different from the one where it was started. ALP3810: without matching IFxxx This message indicates that an ELSE or ENDIF construct was encountered prior to encountering an IF construct. ALP3811: Reserved symbol "" cannot be modified An attempt was made through the -D command line option to alter the value of a predefined identifier. Unless documented otherwise, this is an illegal operation. ALP3812: Symbol "" already defined An attempt was made to define a preprocessor macro name that conflicts with an existing identifier of an incompatible type. ALP3813: expected This message is displayed when a preprocessor directive expected a text argument enclosed in angle brackets < >, but a valid argument was not supplied. ALP3814: Invalid character in numeric constant The assembler was parsing a numeric constant and an alphabetic character was encountered that was not a valid radix specifier or hexadecimal digit. ALP3815: Illegal digit(s) for specified radix A literal integer constant was qualified with radix override, but was specified using digits that are not valid for the given radix qualifier. For instance, use of the literal 1234Y is not legal because the Y suffix specifies a binary number and only the digits 0 and 1 are valid binary digits. ALP3816: Expecting ">" This message appears when the preprocessor is parsing a <text-item> and the end of line or end of file was encountered. A closing angle bracket (>) was expected. ALP3817: Unterminated COMMENT The preprocessor was scanning the body of a COMMENT directive when the end of the current input stream was encountered; the closing delimiter character originally specified in the COMMENT directive was never encountered. Recovery: Block comments may not span across input files. Provide a closing delimiter as specified in the opening COMMENT directive. ALP3896: Control character illegal in this context A COMMENT preprocessor directive was encountered, and an attempt was made to scan for the next character which signifies the beginning and end of the comment text, but an unexpected non-printable control character was encountered instead. Recovery: Only characters that are representable as printable text may be used to open and close a COMMENT sequence. ALP3897: No closing quote The preprocessor was parsing a quoted string literal, and the end of line or other terminator was encountered before the literal was ended with a closing quote character. Recovery: Verify that only single quotes () or double quotes ("") are used to open and close a string literal; they must be used in pairs. Verify that the ending quote character was not immediately preceded by another identical quote character; the assembler interprets this sequence as a request to insert a quote character into the string literal. ALP3898: Unexpected end of file The lexical analyzer portion of the assembler preprocessor was scanning within the body of a token (for example, a block comment), when the end of the input stream was encountered. ALP3899: Unexpected terminator The lexical analyzer portion of the assembler preprocessor was performing a text substitution operation as directed by one of the "!" or "&" operators, when the end of file or internal macro buffer was encountered. Message Numbers 4000-4999: Warning Messages Warning messages are issued when the assembler detects a questionable construct in the input stream. The condition is not severe enough to prevent generation of an object file, but the situation should be investigated and corrected since the output program may be incorrect. ALP4201: Offset operator applied to register-indirect expression An OFFSET operator was applied to a register-indirect expression. In MASM 5.10 emulation mode this does not cause conversion to an immediate expression; instead the register-indirect addressing mode attributes are retained, and the assembler applies the OFFSET operator to the displacement field, forcing it to have the size of the address offset. Applying the OFFSET operator to a register-indirect expression is illegal if the assembler is not operating under MASM 5.10 emulation. ALP4202: Invalid type expression; cannot convert Under MASM 5.10 emulation, a constant numeric expression may be used as the left-hand operand of the PTR operator. In the referenced expression, the left-hand operand of the PTR operator did not evaluate to a value suitable for use as the operand size of the right-hand operand. The operand size of the right-hand operator was not converted. ALP4203: Type conversion operation has no effect A type conversion operation involving the PTR operator was performed on an expression whose type cannot be modified. For example, the right operand of the PTR operator cannot be a register value. ALP4401: Error closing listing file ""; An error occurred while attempting to close the referenced file. Recovery: Verify that no other processes are accessing the file, and that the file system is functioning correctly. ALP4402: Error deleting listing file ""; An error occurred while attempting to delete the referenced file. Recovery: Verify that no other processes are accessing the file, and that the file system is functioning correctly. ALP4501: Assuming NEAR distance for operand size A CALL or JMP instruction was coded to pass control indirectly through a memory operand of indeterminate size. When operating in MASM 5.10 emulation mode, the memory operand is assumed to have the same size as address size of the segment containing the CALL or JMP instruction, and implies a target having NEAR distance. Recovery: The memory operand should be given an explicit size, regardless of whether or not the default address size and NEAR distance is the desired operation. This code will cause assembly errors if not assembled under MASM 5.10 emulation mode. ALP4502: Can't ASSUME CS to a grouped segment An attempt was made to ASSUME the CS register to a segment that was previously named in a GROUP directive. This implies that the CS register might have different values to access the same body of code at runtime. This is illegal, and the assembler altered the ASSUME operation to refer to the group containing the segment instead. Recovery: If running the assembler under MASM 5.10 emulation, change the ASSUME directive to refer to the group name containing the segment; otherwise, remove the ASSUME statement. ALP4503: Operand size does not match instruction This is a warning message that appears when an operand specifies a size that differs from the operand size of the instruction. In this case, the operand size is implied by the instruction itself, and an explicit operand size is not required. However, if an operand size is supplied, it must match the implied size or this warning will be issued. ALP4504: [Constant] is immediate in MASM mode This message indicates that a single expression coded as a constant value in square brackets [ ] is treated as though the brackets were not specified (when the assembler is operating in MASM emulation mode, which is the default). This warning is issued because brackets are required for an indirect memory expression when registers are involved, and the connotation is that the presence of brackets is required to force a memory reference, when in fact they are ignored. Recovery: Use a segment override (for example, DS:[1234h]) when an indirect memory reference to an absolute address is desired. As explained above, the presence of brackets shown in the example is not required, but they are preferred for readability. Note: A future release may provide an alternate mode of operation such that bracketed constant values will be treated as memory references; this warning message thus points out constructs that are incompatible with any future releases operating in this mode. Since the presence of brackets are currently redundant in this context (and indicate a possible programming error), it is recommended that they be removed. ALP4505: Access to data through a code label This warning occurs when an instruction attempts a memory access through a code label (a procedure name or a label followed by a colon). This is an invalid operation unless a type conversion is first performed on the expression containing the label. ALP4506: Selected processor does not support this instruction This message is issued under the same circumstances as message ALP3522, but has reduced severity when the assembler is operating under MASM emulation. ALP4507: Only storing NEAR portion of FAR pointer Within a data allocation directive, a variable was initialized to contain the address of a FAR code label or variable defined in another segment. However, the size of the variable being initialized is not large enough to hold the fully qualified address (both segment and offset) of the item, and only the offset portion was stored. Recovery: If the full address of the pointer is desired, then the size of the data item being initialized must be increased. Otherwise, the OFFSET operator should be used in the address expression to truncate the segment information and suppress this warning. ALP4508: Operand size inferred from immediate value When operating under MASM 5.10 emulation mode, the assembler allows an immediate value to determine the size of the memory operand to which it is applied if its magnitude exceeds that which will fit into a byte. In this case, it is assumed that the operation refers to a word-sized memory operand (2 bytes in USE16 segment, 4 bytes in a USE32 segment). If the magnitude of the immediate value is sufficiently small (less than 128), then the operation is ambiguous, and an error is generated because the assembler does not know whether to treat the memory operand as a byte or a word value. Recovery: An explicit size should be given to the memory operand. Code relying on this behavior will not assemble correctly if the assembler is not operating in MASM 5.10 emulation mode. ALP4509: Operand size mismatch One of the following conditions occurred: �An attempt was made within a data allocation directive to initialize an item with an expression having an explicit and different size. �A memory operand with an explicit size was used in conjunction with a register operand, but two operand sizes did not match. The register operand size overrides the size of the memory operand. �A memory operand with an explicit size was used in conjunction with an address offset. The size of the memory operand and the size implied by the address size of the offset value did not match. ALP4510: Truncation of significant bits in immediate value One of the following conditions occurred: �An operand expression was encoded into the instruction as an immediate value, but the magnitude of the numeric expression exceeded the number of bits required to store it in instruction encoding; the value was truncated to fit in the allotted space. Since the assembler uses 32-bit arithmetic during expression processing, operations such as negation or logical inversion of small numeric quantities can result in values that require all 32 bits of precision. �A relocatable immediate expression was converted to a smaller type, thus affecting the type of the relocation record generated for resolution by the linker. This could happen if an offset expression was forced into a byte sized storage space. Recovery: Use the <type> PTR override to explicitly convert the expression to a value of the proper size. ALP4512: Can't ASSUME CS to different segment or group; ignored Within an open segment, an attempt was made to ASSUME the CS register to a different segment, or to a group not containing the currently opened segment. The operation was not allowed. Recovery: Remove the ASSUME statement, or adjust it so that it specifies the currently opened code segment or a group containing the segment. ALP4513: Invalid mnemonic/operand combination This message is issued under circumstances similar to that of message ALP3505. In this case an instruction encoding was found for the given mnemonic/operand combination, but the encoding is considered invalid when the assembler is not operating under this level of MASM emulation; thus this warning is issued. ALP4514: No size for operand, assuming default This message indicates that no operand size was given for the instruction, but the assembler was able to infer an operand size from the instruction itself. This message is only issued when the assembler is operating under MASM 5.10 emulation. In this mode, a default operand size is associated with certain processor mnemonics; this default value is used when no explicit operand size is given. Recovery: An explicit operand size should be given for the referenced expression because the assembler is automatically resolving a potentially dangerous ambiguity in its selection of a default operand size. ALP4601: Error closing object file ""; An error occurred while attempting to close the referenced file. Recovery: Verify that no other processes are accessing the file, and that the file system is functioning correctly. ALP4602: Error deleting object file ""; An error occurred while attempting to delete the referenced file. Recovery: Verify that no other processes are accessing the file, and that the file system is functioning correctly. ALP4603: Missing END The end of file was encountered but an END directive was never processed. All top-level assembler modules invoked from the command line must have an END directive as the last statement in the file. Files processed with the INCLUDE preprocessor directive should not contain an END statement. ALP4701: Unterminated PROC When the end of the source input stream was encountered, it was determined that a procedure was opened with a PROC directive, but never closed. Recovery: Any procedures opened with PROC must be closed within the same input stream using the ENDP directive. ALP4702: Unterminated segment "" When the end of the source input stream was encountered, it was determined that a segment was opened with a SEGMENT directive, but never closed. Recovery: Any segments opened with SEGMENT must be closed within the same input stream using the ENDS directive. ALP4703: Unterminated structure or union When the end of the source input stream was encountered, it was determined that a structure or union was opened with a STRUC/STRUCT or UNION directive , but never closed. Recovery: Any structure or union must be terminated using the ENDS directive. ALP4704: Address size mismatch The referenced address expression was used as a source operand, but the address size of the expression did not match the size of the target operand . An implicit conversion was applied to the address size of the referenced expression. ALP4706: Processor mnemonic used as a label This message is issued when a processor instruction mnemonic is is used as an identifier. This condition is normally an error if the +Sk command line switch is turned off. Related Information: �Sk - Control Use of Reserved Words as Labels ALP4707: Alignment value not valid with current segment alignment The referenced alignment factor was less than the alignment factor specified in the SEGMENT declaration containing the ALIGN statement. This condition is illegal because the assembler cannot guarantee that the linker will not invalidate the requested alignment when it exercises its right to position the entire segment according to the alignment factor given in the enclosing SEGMENT declaration. Note: This condition is allowed to exist as a warning under MASM 5.10 emulation for backward compatibility with existing source files. Recovery: Respecify either the aligment factor or the SEGMENT delaration so that the segment alignment is greater than or equal to any alignment factor requested therein. ALP4708: Symbol redeclared relative to different segment This message is issued under the same circumstances as message ALP3728, but has reduced severity when the assembler is operating under MASM emulation. ALP4709: Label outside segment boundaries This message is issued under the same circumstances as message ALP3713, but has reduced severity when the assembler is operating under MASM 5.10 emulation. ALP4710: Identifier expected This message is issued under the same circumstances as message ALP3731, but has reduced severity when the assembler is operating under MASM 5.10 emulation. ALP4711: Attribute respecification ignored An attempt was made in a directive to change an attribute that has already been specified. Once set, the attribute cannot be changed. If the attribute is respecified, it must match the existing setting or this warning will be issued. ALP4712: Mismatch of segment address sizes in group This message is issued under the same circumstances as message ALP3747, but has reduced severity when the assembler is operating under MASM 5.10 emulation. ALP4713: Attribute mismatch during reopen of segment This message is issued under the same circumstances as message ALP3729, but has reduced severity when the assembler is operating under MASM 5.10 emulation. ALP4801: Identifier expected, condition is false For compatibility with MASM, the IFDEF and IFNDEF preprocessor directives will accept a non-identifier token as an argument, but this warning is issued to indicate that the condition cannot be properly tested, and the result is always false. Recovery: Modify the argument so that it is a correctly formed identifier. ALP4802: Extra data on line This message appears under the same conditions as that of ALP3804, but for better compatibility with MASM the severity has been reduced from an error to a warning. This message will be issued if an IFDEF, IFNDEF, ELSEIFDEF, or ELSEIFNDEF directive contains extra data at the end of the line. Recovery: Remove the offending token(s) beginning at the referenced location. ALP4803: Expecting ">" This message appears when the preprocessor is parsing a <text-item> and the end of line or end of file was encountered. A closing angle bracket (>) was expected. ALP4804: Expression expected, zero assumed For compatibility with MASM, certain preprocessor directives that expect an expression operand will not issue an error if the operand is absent. This warning is issued instead to indicate that an implicit expression value of zero is assumed. ALP4899: Illegal character This message is issued by the text preprocessor when a character was encountered in the source stream that is not part of the valid execution character set. Recovery: This may cause undefined behaviors, and a text editor should be used to remove the offending character. Message Numbers 5000-5999: Informational Messages Informational messages may be requested with a command line option (see M - Control Individual Messages or Groups) and provide the user with a variety of useful information. All informational messages are disabled by default. ALP5001: Number of Errors : Informs the user of the number of error messages issued during the assembly . ALP5002: Number of Warnings : Informs the user of the number of warning messages issued during the assembly. ALP5003: Number of Symbols : This message indicates how many user identifiers were defined during the assembly. ALP5101: Opened message output file "" This message indicates that the message output processor has opened and is prepared to write to the referenced file. ALP5201: Operand is declared relative to "" This message indicates that the referenced relocatable expression is declared relative to the given segment or group name. ALP5301: Assembler is on source pass This messages indicates that the assembler has begun processing the referenced pass through the input stream. ALP5401: Closed listing output file "" This message indicates that the listing file processor has closed the referenced file. ALP5402: Deleted listing output file "" This message indicates that the listing file processor has deleted the referenced file. ALP5403: Opened listing output file "" This message indicates that the listing file processor has opened and is prepared to write to the referenced file. ALP5501: Address size is This message provides information to supplement the occurrence of other related warning or error messages. The expression referenced by the message coordinates has inherited or has been assigned the address size given in the message text. ALP5502: No size for operand, assuming default This message indicates that no operand size was given for the instruction, but the assembler was able to infer an operand size from the instruction itself. ALP5503: Instruction padded with NOP(s) This message indicates that the assembler generated one or more NOP instructions to follow the object code generated for the referenced instruction. The instruction operand list contains a forward-referenced expression which forced the assembler to allow space for the longest possible instruction encoding on the first pass. The generation of NOP instructions may be avoided by qualifying the forward reference with a < type> PTR override. ALP5504: Operand size is This is an informational message that typically accompanies other errors or warnings dealing with operand size problems. This message is issued for every operand expression involved in the condition that caused the associated error or warning message, and indicates the operand size of the referenced expression. ALP5505: Segment override has no effect This message is issued when a segment override operator was used in an expression, but the override was discarded because the offset operator was applied. ALP5506: Generated ASSUME CS: This message is issued when an attempt is made to generate code in an open segment for which there is no valid ASSUME CS in effect. The assembler automatically generates an ASSUME statement such that the CS register is associated with the currently opened segment or with the group containing that segment if one exists. ALP5601: Closed object output file "" This message indicates that the object file processor has closed the referenced file. ALP5602: Deleted object output file "" This message indicates that the object file processor has deleted the referenced file. ALP5603: Opened object output file "" This message indicates that the object file processor has opened and is prepared to write to the referenced file. ALP5701: Assembly terminated by .ABORT The .ABORT directive was used to terminate the assembler at the referenced location. ALP5702: Address size assumed to be This messages indicates that the referenced identifier was an external code label declared outside of segment boundaries, and was assumed to be defined in an external segment having the referenced address size. ALP5703: Structure redefinition: "" This message indicates that the current structure definition is replacing a previous definition of the same name. ALP5704: Declaration sets = This message describes the attribute that is mismatched in a segment redeclaration. ALP5705: outside of segment boundaries This message appears when an external declaration (COMM or EXTRN) appears outside of any enclosing segment. If an external declaration is not enclosed in a segment definition that describes how the external symbol is ultimately defined, the assembler is deprived of segment attribute information; in particular, USE16 versus USE32. This could cause the assembler to generate incorrect object code, and may also cause linker errors. Recovery: Place the external declaration within a segment definition that correctly reflects the segment definition in the external module where the symbol is defined. ALP5801: Begin skipping tokens This message indicates that the results of a conditional assembly directive were evaluated to be false, and that the preprocessor has begun discarding tokens at the referenced location. No tokens will be returned to the parser until an appropriate ELSE or ENDIF condition is encountered. ALP5802: Finished skipping tokens This message indicates that a false conditional block was ended with an appropriate ELSE or ENDIF construct. The preprocessor will begin returning tokens to the parser after the referenced location. ALP5803: Closed source file "" This message indicates that the preprocessor has closed the referenced file . ALP5804: Opened source file "" This message indicates that the preprocessor has opened and is prepared to read from the referenced file. ALP5805: Macro redefinition: "" This message indicates that the current macro definition is replacing a previous definition of the same name. ALP5806: Opened INCLUDE file "" This message indicates that the preprocessor has opened and is prepared to read from the referenced include file. ALP5807: Closed INCLUDE file "" This message indicates that the preprocessor has closed the referenced include file. ALP5901: Closed response file "" This message indicates that the command line processor has closed the referenced file. ALP5902: Opened response file "" This message indicates that the command line processor has opened and is prepared to read from the referenced file.
Return Codes
When ALP completes, it passes a return code back to the program that invoked it. This return code shows whether ALP completed successfully or with an error. The return codes are: 0 Normal program completion. 1 User-specified file not found. 2 Unexpected system error. 3 Terminated by user or operating system. 4 Syntax errors in input file. 5 Command line usage error. 6 Internal sanity check failure. 7 Error accessing ALP messages file.
Notices
October 1997
The following paragraph does not apply to the United Kingdom or any country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS". WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.
This publication could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time.
It is possible that this publication may contain reference to, or information about, IBM products (machines and programs), programming, or services that are not announced in your country. Such references or information must not be construed to mean that IBM intends to announce such IBM products, programming, or services in your country.
Requests for technical information about IBM products should be made to your IBM authorized reseller or IBM marketing representative. (C) Copyright International Business Machines Corporation 1995-1997. All rights reserved. Note to U.S. Government Users -- Documentation related to restricted rights -- Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.
The Processor Reference portion of this manual contains information reprinted with permission from Intel Corporation.
Disclaimers
References in this publication to IBM products, programs, or services do not imply that IBM intends to make these available in all countries in which IBM operates. Any reference to an IBM product, program or service is not intended to state or imply that only IBM's product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any of IBM's intellectual property rights or other legally protectable rights may be used instead of the IBM product, program, or service. Evaluation and verification of operation in conjunction with other products, programs, or services, except those expressly designated by IBM, are the user's responsibility.
IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to the IBM Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood NY 10594, U.S.A.
Trademarks
The following terms are trademarks of the IBM Corporation in the United States or other countries:
- IBM
- Operating System/2
- OS/2
- Presentation Manager
The following terms are trademarks of other companies:
- Microsoft - Microsoft Corporation
- Pentium - Intel Corporation Pentium Pro - Intel Corporation
- UNIX - UNIX System Laboratories, Inc.